

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO INSTITUTO DE GEOLOGIA

DIRECTOR: ING. GUILLERMO P. SALAS

Boletín 74

1923/

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

PARTE 1. GEOLOGÍA DEL ÁREA DE PLOMOSAS, CHIHUAHUA

POR

LUTHER W. BRIDGES, II

Shell Oil Company, Midland, Texas, E. U. A.

TRADUCIDO DEL INGLÉS AL ESPAÑOL

POR

DIEGO A. CORDOBA

Parte 2. Notas sobre la geología de la región de Placer de Guadalupe y Plomosas, Chihuahua

POR

ZOLTAN DE CSERNA

MEXICO, D. F. 1966

PROLOGO

El Instituto de Geología de la Universidad Nacional Autónoma de México ha celebrado un convenio de cooperación con el Bureau of Economic Geology y el Departamento de Geología de la Universidad de Texas, para el entrenamiento geológico de estudiantes post-graduados de ambas universidades. En este convenio se estipula que los estudios para obtener grados académicos que se llevan a cabo en el territorio de la República Mexicana, serán editados dentro de las publicaciones seriadas del propio Instituto de Geología, para que, los resultados que se obtengan de las investigaciones, estén al alcance inmediato de los geólogos y estudiantes de geología en México.

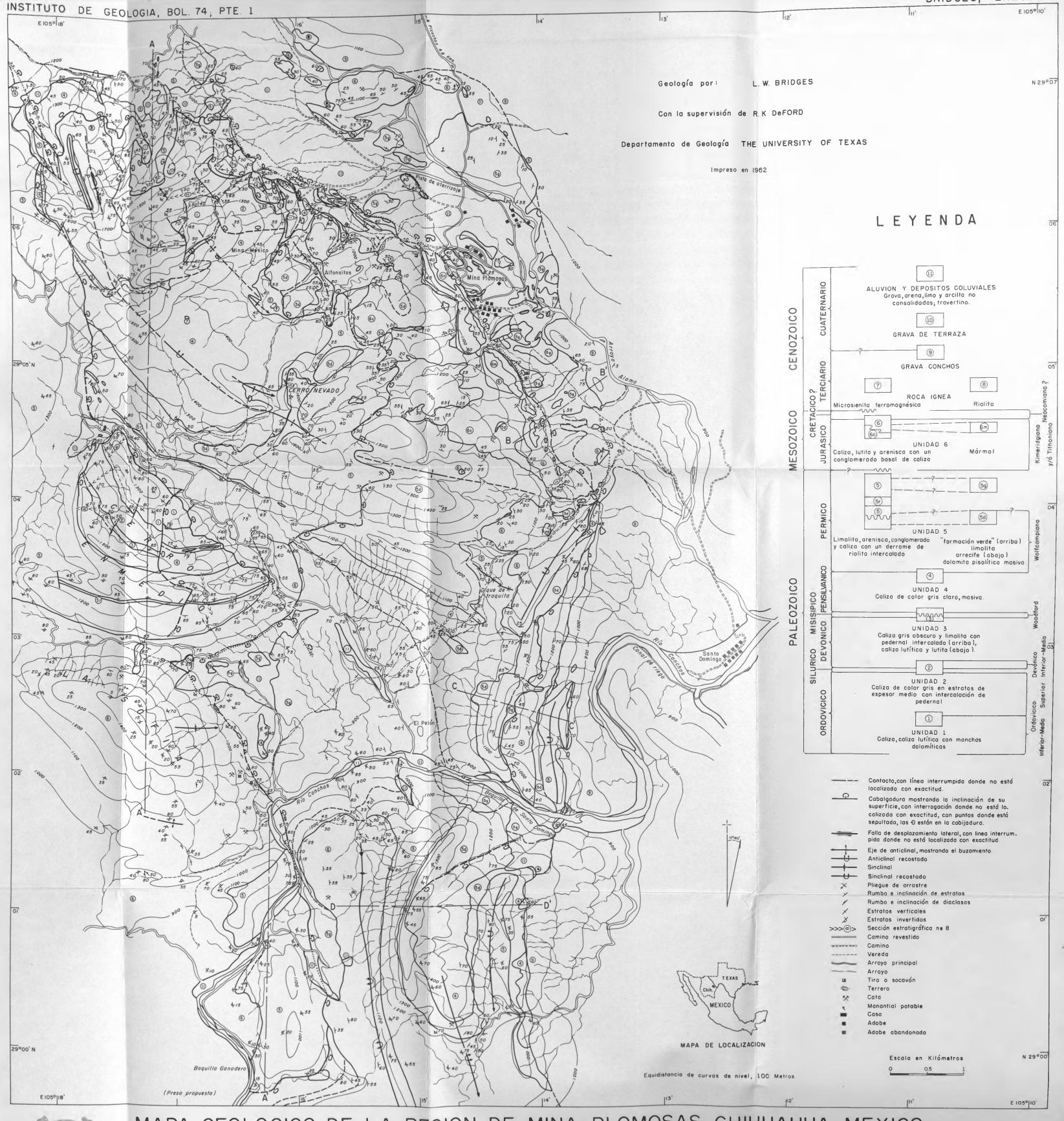
Por consiguiente, y con los antecedentes arriba expuestos, se autorizó la publicación de este trabajo y se felicita a su autor, Dr. Luther W. Bridges, por los resultados que obtuvo durante sus estudios en el noreste del Estado de Chihuahua, particularmente en lo que se refiere a la estratigrafía precarbonífera de esa región. Al mismo tiempo, se agradece al profesor Ronald K. DeFord, del Departamento de Geología de la Universidad de Texas, el haber captado los problemas que se presentan, particularmente la estratigrafía de la región de Placer de Guadalupe, Chihuahua; el haber sugerido el tema de investigación al Dr. Bridges, y el continuo interés que mostró en el estudio de la geología del suroeste de Texas y partes adyacentes de México.

Una de las metas del Instituto de Geología es la de procurar que los datos e interpretaciones de la geología de México que se publiquen sean lo más exactos posible o, por lo menos, que no presenten discrepancias con lo ya conocido, y en el caso de que esto suceda se trata de llamar la atención del lector a tal o cual hecho, para que no solamente se tomen las precauciones correspondientes con los puntos o aspectos que sean dudosos, sino que éstos estimulen investigaciones posteriores.

Para la revisión crítica del trabajo del Dr. Bridges se comisionó al Dr. Zoltan de Cserna, Investigador Titular del Instituto, quien no solamente estudió el manuscrito en detalle, sino que también visitó en varias ocasiones, el área de Plomosas y la región entre la ciudad de Chihuahua y Ojinaga.

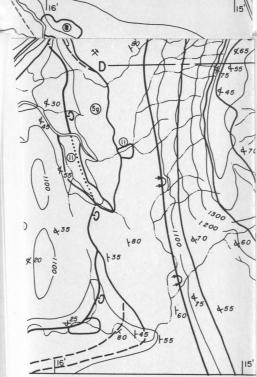
En virtud de que el Dr. Bridges optó por publicar el manuscrito en su forma original, sin incorporar las observaciones que le fueron hechas por el Dr. de Cserna, se comisionó al Ing. Diego Córdoba-Méndez, Investigador Adjunto del Instituto, para que tradujera el manuscrito original al español, el cual constituye la Parte 1 de este Boletín.

Por lo tanto, el trabajo que se presenta a continuación, es una traducción fiel del original del Dr. Bridges y los datos e interpretaciones que contiene son de su absoluta responsabilidad, habiéndose omitido las fotografías y reproduciendo solamente las ilustraciones de línea. La Parte 2 de este mismo Boletín presenta las críticas y comentarios del Dr. de Cserna sobre el mismo estudio, así como sobre la geología de aquella región.


Se espera que esta publicación sea recibida con beneplácito, por los profesionales que laboran en el campo de la geología en México.

Ing. Guillermo P. Salas Director

México, D. F., septiembre de 1964


CONTENIDO

Parte I. Geologia del área de Plomosas, Chihuahua. Por Luther W. Bridges, II	1
Parte 2. Notas sobre la geología de la región de Placer de Guadalupe y Plomosas, Estado de Chihuahua, Por Zoltan de Cserna	13

RKINGES,

ICO DE LA RE

Univ. Nal. Autón. México, Inst. Geología, Bol. 74, pte. 1, p. 1-134, 3 láms., 21 figs., 11 tab.

GEOLOGIA DEL AREA DE PLOMOSAS, CHIHUAHUA

Por

LUTHER W. BRIDGES, II.

Shell Oil Company, Midland, Texas, E. U. A.

TRADUCIDO DEL INGLÉS AL ESPAÑOL

Por

DIEGO A. CORDOBA

CONTENIDO

	Página
Resumen	. 5
Introducción	. 5
Explicación de términos y abreviaturas	. 6
Localización	. 8
Accesibilidad	. 8
Cartografía	. 10
Agradecimientos	. 11
Estratigrafía	. 12
Introducción estratigráfica	. 12
Afloramientos premesozoicos	. 13
Conodontos y residuos insolubles	. 15
Minerales pesados	. 18
Petrología sedimentaria	. 20
Unidad 1	
Definición	. 20
Espesor y descripción	23
Rasgos especiales	24
Cuerpos biohérmicos	
Fuente de origen de la arenisca	
Rumbo del depósito	
Paleontología	

	Página
Edad	26
Correlación	27
Unidad 2	29
Definición	29
Espesor y descripción	29
Rasgos especiales	31
Caliza intraclástica	31
Hundimiento intraformacional	32
Rumbo del depósito	32
Paleontología	32
Fósiles del Ordovícico Superior	32
Fósiles silúricos	33
Fósiles devónicos	34
Edad	35
Correlaciones	35
Unidad 3	37
Definición	37
Espesor y descripción	37
Rasgos especiales	39
Discordancias	39
Rumbo del depósito	39
Paleontología	39
Miembro inferior	39
Miembro superior	40
Edad	~ ~
Miembro inferior	
Miembro superior	
Capas faltantes	
Correlaciones	
Miembro inferior	
Miembro superior	
Unidad 4	
Definición	
Espesor y descripción	
Rumbo del depósito	
Paleontología	
Edad	
Correlación	
Unidad 5	
Definición	
Espesor	
Descripción	
Fuente de origen y dirección del conglomerado	
Arrecife	. 51
Definición	. 51

	Pagina
Espesor y descripción	52
Facies	55
Orientación del arrecife	56
Extensión en el subsuelo	57
Riolita extrusiva	57
Espesor y descripción	57
Fuente de origen y extensión	57
"Formación verde"	58
Definición	58
Espesor y descripción	58
Posición estratigráfica	60
Medio ambiente de depósito	60
Paleontología	61
Fósiles extraños al arrecife	61
Fósiles del arrecife	62
Edad	63
Correlaciones	64
Unidad 6	66
Definición	66
Espesor y descripción	66
Zonas litológicas	67
Conglomerado calizo	67
Mármol	70
Rasgos especiales	71
Origen del mármol	71
Dirección de la fuente de origen de la arenisca	71
Clima del Jurásico Tardío	71
Paleontología	71
Edad	74
Correlaciones	74
Roca cretácica	
Roca ignea	
Grava Conchos	
Depósitos de terraza, aluvión y coaluvión	82
Travertino	
tructura	83
Marco regional	
Estructura paleozoica	85
Estructura laramiana	
Pliegues	
Inversión en La Sofía	
Fallas	
Estructura cenozoica	
Diaclasas	
Foliación	
ronacion	89

Página

EOLOGIA	DEL	AREA	DE	PLOMOSAS,	CHIHUAHUA

Boudi	nage	89
Proble	emas estructurales	89
Geología	económica	91
Plomo Cobre	y cinc	91 93
Oro .		93
),	93 94
Edad	y secuencia de la mineralización	94
	ración futura	94
Posib	ilidades petroleras de Chihuahua	95
Historia	geológica regional	96
	ria precámbrica	96
	ria paleozoica	96
	ria mesozoica	102
Histo Trabajo	ria cenozoicas citados	105 107
Apéndi	ce sobre secciones medidas	110
	ILUSTRACIONES	
Figura	1.—Contorno de la zona estudiada. Parte centro-oriental de Chihuahua 2.—Porción centro-oriental de Chihuahua 3.—Columna estratigráfica 4.—Afloramientos de rocas premesozoicas en Chihuahua y Coahuila	7 9 12 13

	y secuencia de la mineralización	94
Explo	pración futura	94
	ilidades petroleras de Chihuahua	95
Historia	geológica regional	96
	ria precámbrica	96
	ria paleozoica	96
	ria mesozoica	102
		105
Histo	ria cenozoica	107
Trabaje	os citados	110
Apendi	ce sobre secciones medidas	110
	ILUSTRACIONES	
Figura	1Contorno de la zona estudiada. Parte centro-oriental de Chihuahua	7
I Iguia	2.—Porción centro-oriental de Chihuahua	9
	3.—Columna estratigráfica	12
	4.—Afloramientos de rocas premesozoicas en Chihuahua y Coahuila	13
	5.—Distribución de conodontos en el área estudiada	16
	6.—Abundancia relativa de conodontos	17
	7.—Correlación de las secciones medidas en la Unidad I	27 28
	8.—Correlación ordovícica	36
	10.—Correlación de estratos silúricos y devónicos	37
	11.—Correlación de las secciones medidas en la Unidad 3	40
	12.—Correlación de las secciones medidas en la Unidad 4	45
	13.—Facies gradacionales del arrecife	52
	14.—Correlación de las secciones medidas en la Unidad 5	65
	15.—Correlación de las secciones medidas en la Unidad 6	76
	16.—Provincias fisiográficas de Chihuahua	84
	17.—Características estructurales de la localidad	91
	18.—Sucesión de rocas paleozoicas	101
	19.—Rumbos de depósito de rocas paleozoicas	104
	21.—Extensión de las rocas jurásicas en Chihuahua	105
	1.—Mapa geológico de la región de Minas Plomosas, Chihuahua, México,	100
	opuesta a la página	1
	2.—Secciones estructurales de la región de Mina Plomosas, Chihuahua	
	México, opuesta a la página	83
	3.—Mapa geológico de reconocimiento, región de Placer de Guadalupe-	0.1
m 11	Mina Plomosas, Chihuahua, México, opuesta a la página	96
Tabla	1.—Tipos de turmalina en las Unidades 1, 5 y 6	19 21
	2.—Unidad 1: Composición en porciento	30

	Página
4.—Unidad 3: Composición en porciento	38
5.—Unidad 4: Composición en porciento	44
6.—Unidad 5: Composición en porciento	
7.—Arrecife: Composición en porciento	
9.—Unidad 6: Composición en porciento	
10.—Zonas de amonita en la Unidad 6	
11.—Roca ígnea: Composición en porciento	79

Los tres afloramientos de roca precarbonífera, que no habían sido reconocidos con anterioridad, se encuentran en el área de Mina Plomosas-Placer de Guadalupe y cubren una superficie total de un poco menos de 6.5 km.2

Dentro de la Formación Plomosas nombrada por Burrows en 1909, se cartografiaron seis unidades que varían en edad desde el Ordovícico al Jurásico; el espesor total es de cerca de 2,440 metros. Los 610 metros inferiores de la sección están compuestos de rocas ordovícicas, silúricas, devónicas, misisípicas y pensilvánicas, constituidas predominantemente de caliza y son parecidas a algunas formaciones contemporáneas del oeste de Texas. La sección de 610 metros a 915 metros comprendida entre el Pensilvánico y Jurásico tardío, compuesta principalmente de limolita y conglomerado, consiste de una secuencia pérmica de 150 a 300 metros (Wolfcampiano-Leonardiano) suprayacida por capas de edad indeterminada. La secuencia pérmica incluye un arrecife. La sección de rocas del Jurásico Tardío, de 910 metros de espesor, está compuesta de lutita, arenisca y caliza.

El área se encuentra al norte de la orientación principal Ouachita; el tectonismo paleozoico fue menos intenso que en el Levantamiento de Marathon. De cualquier manera las discordancias angulares dentro de la secuencia pérmica indican movimientos pérmicos.

El tectonismo laramiano fue extremo y se presentan cabalgaduras importantes hacia el oeste. Dos secciones grandes están invertidas. Acortamiento de la corteza del orden de 16 km puede probarse cerca de Mina Plomosas. Probablemente la sericita y el microspato (caliza finamente recristalizada) de las rocas paleozoicas y jurásicas son producto de un metamorfismo incipiente que resultó principalmente de la deformación Laramide.

La Mina Plomosas es importante productora de plomo y cinc. Un pequeño placer de oro está cerca de Placer de Guadalupe. Se piensa que toda la mineralización en el área Placer de Guadalupe-Mina Plomosas es de edad terciaria. La potencia petrolífera de Chihuahua no ha sido probada todavía.

INTRODUCCION

Antes de esta investigación, la geología del área comprendida entre Mina Plomosas y Placer de Guadalupe era relativamente desconocida, Burrows (1909), que fue el primero en discutir la geología de la región, dio nombre a la Formación Plomosas, de la cual ahora se sabe que incluye rocas de edad variable, desde el

Ordovícico hasta el Jurásico. Burckardt (1910), Böse (1923) y otros reconocieron la presencia de estratos jurásicos por los años de 1910 y 1920. King y Adkins (1946), a raíz del trabajo de campo hecho en 1933, agregaron algo al conocimiento de la región, aunque todavía no se conocían afloramientos de rocas paleozoicas precarboníferas. En 1945 Still (1946-47) estuvo mapeando la región cercana a Placer de Guadalupe, y de este trabajo se tomaron algunos datos para la Lámina 3, aunque el autor no está en completo acuerdo con la interpretación estratigráfica.

En 1955 Edward C. Spalding descubrió rocas precarboníferas en Mina Plomosas al identificar *Halysites* en un núcleo profundo de la mina y supuso, correctamente, que éste era del Silúrico. En 1959, hacia el final del primer verano, el autor de esta disertación descubrió en el campo dos afloramientos de rocas precarboníferas cerca de Mina Plomosas. En 1960 se reconoció un tercer afloramiento, cerca de Placer de Guadalupe.

El descubrimiento de estos afloramientos dio origen a un número de problemas estratigráficos y estructurales. Establecer la edad de las rocas fue tarea difícil, porque los fósiles son generalmente escasos y están póbremente conservados. Debido a que esta investigación trata principalmente de cartografía geológica más que de paleontología, y debido a que la sección estratigráfica es tan diversa y tan poco conocida, la mayoría de los fósiles fueron mandados al Museo Nacional de los Estados Unidos para su identificación.

El problema estratigráfico está obscurecido por una estructura compleja. La gran sección invertida que aflora en el cerro de la montaña La Sofía, indica contracción de la corteza en una dimensión del orden de 16 km. La dirección del cabalgamiento es hacia el suroeste y oeste, mientras que es hacia el este en la mayor parte del noroeste de Chihuahua. Claramente se ve que la Formación Plomosas, a la que dio nombre Burrows, es inadecuada para incluir la gran secuencia del Ordovícico al Jurásico, pero el área de afloramiento de rocas paleozoicas es tan pequeña que el dar nombre a un gran número de formaciones nuevas no parece justificable por ahora. Probablemente las subdivisiones de la Formación Plomosas que se han reconocido aquí, pueden ser y serán prolongadas hacia el subsuelo. Las subdivisiones propuestas pueden eventualmente convertirse en formaciones.

EXPLICACION DE TERMINOS Y ABREVIATURAS

Las siguientes definiciones son las usadas en este reporte. El área de Plomosas es el área de la Lámina 1; esta área, de los alrededores de Mina Plomosas, ha sido mapeada en detalle. Los nombres de Cerro Enmedio y La Sofía corresponden a dos pequeñas montañas dentro del área de Plomosas. El área de Placer es el área que rodea a Placer de Guadalupe y se extiende al suroeste hasta el área de Plomosas. Esta área no ha sido mapeada en detalle. El área del mapa se refiere a toda el área mostrada en la Figura 1 y en la Lámina 3.

El área del mapa incluye un poco más de las áreas de Plomosas y Placer. El afloramiento de rocas paleozoicas situado hacia el sureste del área de Plomosas, no ha sido nombrado por separado en el mapa. Camino del Arroyo es el camino que se encuentra en el lecho del arroyo, entre Placer de Guadalupe y San Sostenes.

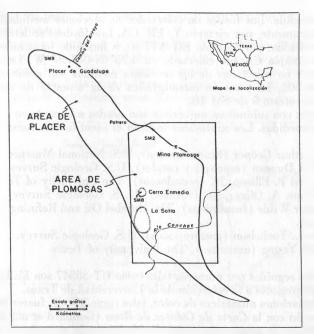


FIGURA 1.—Contorno de la zona estudiada.—Parte centro-oriental de Chihuahua.

La SM 10 fue medida adyacente al camino del arroyo. La Compañía Minera Asarco opera en la mina situada en Mina Plomosas. El nombre "Asarco" fue derivado de la American Smelting and Refining Company, que es el propietario actual. Potrero es un término común en México, usado para designar el valle central de un anticlinal profundamente erosionado. El área a medio camino entre Mina Plomosas y Placer de Guadalupe puede no ser un anticlinal, pero ha sido erosionada y forma un valle central; a esta área se le llama El Potrero.

Las coordenadas geográficas se dan solamente en minutos. Por ejemplo, 5.2' N-16.8' W y deben entenderse los grados de latitud y longitud, los cuales son respectivamente 29° (raramente 28°) y 105°.

SM quiere decir sección medida; SM 10 significa sección medida 10. Se midieron 10 secciones: siete fueron medidas de las rocas más antiguas a las más jóvenes, pero la SM 2, la SM 6 y parte de la SM 9 fueron medidas de las más jóvenes a las más antiguas.

SD significa sección delgada. SD 8-5-20 quiere decir sección delgada de una muestra de roca colectada de la sección medida 8, estrato 5,20 pies sobre la base del estrato 5. La SM 2, SM 6 y parte de la SM 9, sin embargo, están invertidas; entonces SD 2-10-40 quiere decir sección delgada de una roca colectada en la sección medida 2, estrato 10, 40 pies abajo de la cima del estrato 10. Los fósiles colectados de las secciones medidas han sido etiquetados de la misma manera que los especímenes de roca para que el número esté de acuerdo con la dirección

original de medida. Los fósiles no colectados de secciones medidas están etiquetados alfabéticamente, por ejemplo Y, ER, CA. Los fósiles con letra están unidos a la sección debida, por ejemplo ER 8-17-40, o han sido localizados geográficamente; por ejemplo CA fue colectado en 4.35′ N - 17.05′ W. Las muestras de mano de rocas no colectadas de las secciones medidas son nombradas desde el número 1 al 302. La posición estratigráfica de la muestra de mano 108 está anotada en el estrato 5 de SM 10.

Los fósiles con subíndices numéricos son usados solamente en el apéndice de las secciones medidas. Los subíndices indican el identificante como sigue:

- 1. G. Arthur Cooper (braquiópodos), U.S. National Museum.
- 2. Helen Duncan (esponjas y corales), U.S. Geologic Survey.
- 3. Samuel P. Ellison, Jr. (conodontos), The University of Texas.
- 4. William A. Oliver, Jr. (corales), U. S. Geologic Survey.
- Garner Wilde (fusulínidos), The Humbel Oil and Refining Co., Midland, Texas.
- 6. Ellis L. Yochelson (gasterópodos), U.S. Geologic Survey.
- 7. Keith Young (amonitas), The University of Texas.

Los fósiles seguidos por números tales como UT 38547 son fósiles mesozoicos que han sido agregados a la colección de la Universidad de Texas.

Las designaciones numéricas de color, tales como 5G6/1, fueron determinadas por comparación con la Carta de Colores de Roca (Goddard et al., 1951).

Las unidades de mapa, tales como Unidad 6, están siempre en mayúsculas; en el capítulo sobre secciones medidas, en donde puede surgir mayor confusión, las unidades de mapa son seguidas por la Lámina 1, por ejemplo, Unidad 6 (Lámina 1). En el texto, la subdivisión de secciones medidas son referidas como el estrato 15 de SM 8.

LOCALIZACION

Chihuahua, el Estado más grande de México, se localiza al sur del Trans-Pecos de Texas y de Nuevo México. La Mina Plomosas, en la parte centro-oriental este-central de Chihuahua, entre las ciudades de Chihuahua y Ojinaga, ha sido omitida en muchos mapas de Chihuahua que muestran las localidades Placer de Guadalupe, Picachos y Falomir. La Figura 2 muestra los poblados y caminos de importancia en esta región.

ACCESIBILIDAD

La Mina Plomosas está aislada y lejos de alguna ciudad principal. Existe una pista de aterrizaje bien conservada cerca de la mina, al noroeste de ella (Lámina 1), en la cual aeroplanos pequeños pueden aterrizar y despegar aun en época de lluvia.

El ferrocarril entre las ciudades de Chihuahua y Ojinaga es de confiar, aunque lento. Los trenes salen de Ojinaga a las 9:00 A. M. los martes, jueves y sábados, y llegan a Picachos a la 1:00 P.M. del mismo día. Hay 8 km de Picachos a Mina Plomosas y son varios los camiones que viajan con frecuencia entre estas

dos localidades. Los lunes, miércoles y viernes el tren viaja de la ciudad de Chihuahua a la de Ojinaga.

El camino entre la ciudad de Chihuahua y el poblado de Aldama es una carretera pavimentada; pero de Aldama a Mina Plomosas está parcialmente cubierto con grava y en partes es bastante malo. Durante las fuertes lluvias el área El Huérfano (área baja mostrada en la Figura 2) es completamente intransitable para cualqueir vehículo, a veces hasta por una o dos semanas. Un carro

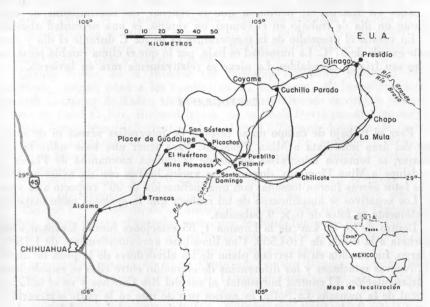


FIGURA 2.—Porción centro-oriental de Chihuahua.

de pasajeros ordinario puede usarse para recorrer los 104 Km de Aldama a Mina Plomosas. El camino de Ojinaga a Mina Plomosas es más abrupto y requiere un jeep o una camioneta. Esta ruta también requiere cruzar el río Conchos en Falomir. Cuando el río está crecido, se puede obtener permiso para cruzar por la vía del ferrocarril.

Dentro del área de la Lámina 1, caminos que pueden ser recorridos en jeep llegan solamente hasta el pie de la sierra; sin embargo, sobre ésta existen caminos de herradura. La mejor manera para llegar al Cerro Enmedio es el camino de Alfonsitos. La mejor ruta hasta el Cerro de La Sofía es el camino del área (4' N - 13.7' W). En general, los montes son altos, por lo que el viajar en burro o en caballo es más lento que caminar. Un nuevo camino está ahora en construcción desde El Huérfano a Boquilla Ganadero (59.8' N - 16.4' W) de tal manera que la parte meridional del área será más accesible.

Boquilla Ganadero es también el lugar más fácil para cruzar el Río Conchos. Dentro del área de la Lámina 1, los únicos lugares para cruzar el Conchos

a pie son 1.1' N · 16' W, 2.1' N · 15.05' W, 2.1' N · 13.1' W. La corriente es

fuerte y la profundidad del agua es de un metro, aproximadamente.

Los mejores manantiales en el área están en 0.3′ N - 14.1′ W; después el que está en 3.9′ N - 13.8′ W, y por último, el que se encuentra en 2.95′ N - 16.95′ W y 3.5′ N - 16.3′ W. Los manantiales en 1.3′ N - 16.9′ W, son persistentes y tienen agua potable, aunque altamente yesífera. Los otros manantiales son menos permanentes, sobre todo en temporadas secas y desde luego hay áreas grandes, en donde no hay manantiales. Los pocos manantiales que hay, están cuidadosamente marcados en Lámina 1, debido a que el rellenar las cantimploras de agua durante un día de trabajo en el campo, en verano, es una necesidad absoluta.

En verano el promedio de la temperatura es de 32°C durante el día y raramente excede de 37°C. La humedad es baja, por lo que el clima cambia poco. Las tardes son frías y agradables. La nieve es relativamente rara en invierno.

CARTOGRAFIA

Para el trabajo de campo no se dispuso de fotografías aéreas ni de mapabase del área inmediata a Mina Plomosas. Para tener una base sobre la cual trabajar, se tomaron fotografías aéreas de la cadena montañosa de Placer de Guadalupe a Mina Plomosas, durante tres vuelos hechos con un avión rentado. Estas fotos aéreas fueron tomadas con una inclinación de 20° respecto a la vertical. Los negativos se amplificaron de tal manera que la geología pudo mapearse directamente en fotos de 6×9 pulgadas.

Dentro de los 80 km² de la Lámina 1, 85 estaciones fueron levantadas con plancheta a la escala de 1:64,500. Una línea-base aproximadamente de 1,154 m de largo, fue medida en el terreno plano de los alrededores de la pista de aterrizaje. Nuevas estaciones y las diferencias de elevación entre ellas se establecieron por triangulación. El control horizontal, al sur del Río Conchos y en el lado meridional de la montaña La Sofía, es menos preciso que en la parte septentrional de la Lámina 1; la Lámina 3 no tiene control horizontal fuera del área de la Lámina 1.

Para transferir los datos de las fotografías oblicuas al mapa final, se usó un copiador virtual. El mapa-base con las 85 estaciones fue amplificado al tamaño determinado por el espaciamiento de las estaciones, según el copiador virtual. Las estaciones en las fotos aéreas se hicieron coincidir con las 85 estaciones del mapa-base y se dibujó así el drenaje, para obtener un arreglo continuo sobre el cual transferir la geología.

La complejidad estructural dentro del área del mapa presenta problemas de cartografía. La "formación verde" es una unidad tectónica (una zona tectónicamente perturbada), así como una unidad estratigráfica; otras rocas dobladas y plegadas son más propiamente zonas de trituración que unidades estratigráficas.

La American Smelting and Refining Company determinó las coordenadas geográficas de Mina Plomosas como de 7.5′ N - 15.15′ W. Las coordenadas de Mina Plomosas leídas en el mapa de la Comisión (1958) son 5.5′ N - 14.2′ W la diferencia es cerca de 2′ N y 1′ W. Las coordenadas de la Comisión son usadas en las Láminas 1 y 3 y también en el texto de este reporte.

AGRADECIMIENTOS

Sin la ayuda generosa de tantas personas, a quienes es imposible citar individualmente, no se hubiera podido dar término a esta disertación, sobre todo en

lo que respecta a la paleontología.

Todos los braquiópodos fueron identificados por G. Arthur Cooper, del Museo Nacional en Washington, D. C., quien les asignó la edad correspondiente. Ellis L. Yochelson identificó y asignó la edad a la mayoría de los gasterópodos. William A. Oliver, Jr., identificó y asignó edad a los corales del Silúrico y Devónico. Helen Duncan identificó y asignó edad a los corales y esponjas ordovícicos. Otras personas del Museo Nacional que ayudaron son Richard S. Boardman, W. J. Sando, Norman Sohl y Dwight Taylor.

Garner Wilde, de la Humble Oil Refining Company, Midland, Texas, identificó y asignó edad a los fusulínidos. L. E. Stover, de Jersey Production Research Company de Tulsa, Oklahoma, identificó algunas esporas y polen por cortesía de Cecil C. Rix. Richard Rezak, de la Shell Development Company de Houston, Texas, identificó algunas algas. Don F. Toomey, también de la Shell Development Company, identificó algunos fósiles de los arrecifes y ofreció su opinión en algunos fósiles ordovícicos. Robert M. Finks, de Queens College, identificó algunas esponjas pérmicas.

Samuel P. Ellison y Keith Young, ambos de la Universidad de Texas, respectivamente, identificaron y asignaron edad a todos los conodontos y amonitas.

Thomas P. Clendenin, de la American Smelting and Refining Company en El Paso, Texas, otorgó el permiso para estar en Mina Plomosas durante dos veranos; también dio copia de los mapas topográficos de las inmediaciones de Mina Plomosas, los cuales se utilizaron durante el primer verano.

Los superintendentes en Mina Plomosas, Charles Handman (Ham) Bush, durante el primer verano, y Roberto F. Limón, durante el segundo verano y en otras visitas posteriores, concedieron su hospitalidad completa en la mina. El uso de la cinta metálica, plancheta y alidada, facilitadas por éstos fueron inapreciables.

En la ciudad de Chihuahua, la gente es amigable y servicial, pero el Ing. Carlos García Gutiérrez, jefe de Fomento Minero en Chihuahua, fue especialmente gentil y amable.

James Lee Wilson y Otto Majewske, de la Shell Development Company, dieron valiosa ayuda en el campo durante el segundo verano. Otto Majeyske más tarde ayudó en la edición del texto.

Zoltan de Cserna, del Instituto de Geología, de la ciudad de México, hizo sugestiones valiosas al mapa. Teodoro Díaz G., de Petróleos Mexicanos, dio valio-

sa información regional.

Todos los profesores del Departamento de Geología de la Universidad de Texas han contribuido al desarrollo de esta disertación. El profesor Ronald K. DeFord sugirió el proyecto, y su cooperación fue muy útil en la publicación de los resultados preliminares, pues fue un editor concienzudo en todas las partes de esta disertación. Keith Young y Peter T. Flawn también ofrecieron su crítica valiosa durante la edición. Robert L. Folk y Earl McBride ofrecieron consejos valiosos respecto a la interpretación petrográfica y sedimentológica. W. Charles Bell hizo sugestiones estratigráficas valiosas. En febrero de 1962, Wil-

ral era más dudosa.

fotografías inclinadas.

liam R. Muehlberger y Earl McBride acompañaron al autor al campo para hacer

una comprobación de última hora en las partes donde la interpretación estructu-

en el uso del copiador virtual que se empleó para construir los mapas a partir de

Science Foundation, fueron indispensables para realizar el proyecto.

bujantes para completar los detalles finales de la Lámina 1.

paciencia e indulgencia de mi madre y mi padre.

Macon, cartógrafo del Texas Bureau of Economic Geology, instruyó al autor

Las becas otorgadas por la Humble Oil and Refining Company y La National

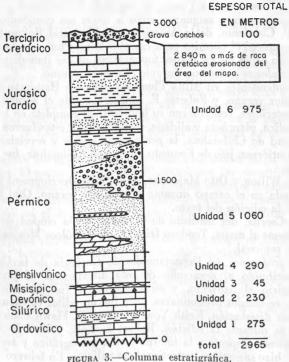
Durante el verano de 1961, la Shell Oil Company en Midland, ayudó generosamente con el uso de sus mesas de dibujo, así como con los servicios de sus di-

Cuando las cosas no iban bien, era siempre reconfortante el contar con la

13

Las rocas prepérmicas, compuestas predominantemente de carbonatos, tienen un espesor de cerca de 650 m. Las rocas pérmicas (?) y jurásicas (Unidades 5 y 6) son rocas clásticas predominantemente silícicas y de mucho más espesor. Gran parte de las rocas cretácicas del área han sido erosionadas.

Las rocas precretácicas expuestas en el área del mapa, no están cerca de otros afloramientos de rocas precretácicas. El afloramiento precarbonífero más cercano está en El Solitario, situado a 160 km al este-noreste. El afloramiento pérmico más cercano está en Aldama, a 55 km al oeste-suroeste, en tanto que el afloramiento más cercano del Jurásico está en Ojo Caliente, a 176 km al nornoroeste.


AFLORAMIENTOS PREMESOZOICOS

Los afloramientos premesozoicos de Chihuahua y Coahuila son pequeños y pocos (Figura 4).

ESTADOS UNIDOS DE AMERICA

ESTRATIGRAFIA INTRODUCCION ESTRATIGRAFICA

La Figura 3 es una columna estratigráfica generalizada del área del mapa. La Formación Plomosas está dividida en seis unidades estratigráficas, que varían en edad, del Ordovícico al Jurásico.



FIGURA 4.—Afloramientos de rocas premesozoicas en Chihuahua y Coahuila.

KILOMETROS

Los afloramientos premesozoicos de Chihuahua y Coahuila están en Aldama, Samalayuca (?), cerca de Palomas, en la Sierra de La Mojina (?) y en el área del mapa. Los de Coahuila están en Potrero de La Mula, en la Sierra del Carmen. y en el área de Las Delicias-Acatita. Probablemente pueden encontrarse otros afloramientos pequeños.

Chihuahua.—En la limolita y arenisca bien estratificada, y poco metamorfizada que aflora cerca de Aldama, solamente un lente pequeño de caliza ha dado fusulínidos de Wolfcampiano. Flawn y Díaz G. (1959, p. 226) consideraron estos depósitos como "flysch". El autor los considera como depósitos postorogénicos, que son generalmente correlacionables con la roca clástica silícica, de edad pérmica, en el área del mapa.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

MacGillavry (1961) sugirió una edad precarbonífera a la secuencia de Aldama, basándose en una "huella de trilobites" que encontró en 1956 en un plano de estratificación.

Al oeste de la carretera de Ciudad Juárez-Chihuahua, cerca de Samalayuca, aflora un cuerpo de arenisca conglomerática resistente; su estructura es generalmente anticlinal y parece subyacer a rocas cercanas del Jurásico Tardío. Su edad puede ser cualquiera desde el Precámbrico hasta el Jurásico. Debido a la similitud litológica de los afloramientos pérmicos cercanos a Mina Plomosas y a los de cerca de Aldama, a la diferencia en color entre ellos y a las rocas precámbricas expuestas cerca de El Paso, parece probable que la edad de la arenisca conglomerática cercana a Samalayuca sea pérmica.

Humphrey (1961) reportó un afloramiento de roca metamórfica del Paleozóico, cubierto por rocas cretácicas albianas en la Sierra de La Mojina. De acuerdo con Díaz G. (1962) la roca más antigua está compuesta de 260 m de conglomerado de chinas y matatenas de clásticos ígneos y metamórficos. El conglomerado contiene un diquestrato y está suprayaciendo a la caliza albiana no lutítica. La falta de material terrígeno en la caliza suprayaciente sugiere un hiatus entre el conglomerado y la caliza. Como especulación, la roca antigua en este afloramiento puede ser equivalente a la roca antigua de Samalayuca.

El área del noroeste de Chihuahua, al oeste y sur de Palomas, contiene los mayores afloramientos de rocas premesozoicas, expuestas en Chihuahua. El autor visitó el área con Díaz G. en 1961. La secuencia estratigráfica es similar a la del Big Hatchett Mountains de Nuevo México, 32 km al oeste. Las rocas más antiguas son misisípicas y las rocas paleozoicas más jóvenes son pérmicas (probablemente leonardianas). Las rocas paleozoicas están cubiertas por una arenisca rojiza, la cual es probablemente de edad cretácica y puede ser correlacionable con la Formación Las Vigas. Díaz G. midió aproximadamente 290 m de estratos misisípicos, 90 m de pensilvánicos y 1,250 m de roca pérmica en Sierra de Palomas (también llamada Sierra Boca Grande). Los estratos misisípicos, de la base hacia arriba, están compuestos, respectivamente, de tres tipos de roca; caliza masiva de color gris obscuro a medio (N 4), calcarenita crinoidal con lentes oolíticos y lutita con triosuarios y arenisca. Los estratos pensilvánicos están compuestos casi por entero de caliza. Las rocas pérmicas están compuestas de dolomita, caliza, lutita y arenisca. Los cambios laterales de facies aunque no muy abruptos, son un problema. Wilde (1961) identificó en las muestras colectadas por Díaz G. Derryaniano, Desmoinesiano, Misouriano, Virgiliano, Wolfcampiano y fusulínidos fuertemente recristalizados, probablemente del Leonardiano.

Al sureste de la Sierra de Palomas, entre la Sierra de Los Chinos y la Sierra de Santa Rita, las cuales están compuestas de rocas pérmicas, existe un afloramiento de arenisca pérmica altamente porosa, que tiene diastratificación torrencial. McBride (1961) sugirió que esta arenisca probablemente fue depositada en aguas

someras en un medio ambiente cercano a la playa, debido a que la arenisca está bien estratificada; esto es más probable que el que haya sido depositada como médanos continentales.

Coahuila.—El mayor afloramiento de roca premesozoica de Coahuila, está en el área de Las Delicias-Acatita y fue estudiado por King et al. (1944); este afloramiento expone más de 3,000 m de roca marina sedimentaria, con pocas intercalaciones de roca volcánica. Muchas partes de la sección contienen abundantes amonitas y fusulínidos. La roca más antigua puede ser pensilvánica y la más joven puede ser de la Ochoana. Aquella parte de la secuencia a la que se le ha hecho una asignación de edad correcta está compuesta de estratos leonardianos y guadalupianos.

"Los sedimentos detríticos parecen derivarse principalmente del este, pero los volcánicos vinieron principalmente del lado occidental del geosinclinal" (King et al. 1944, p. 1). El tectonismo laramiano no fue tan intenso cerca de Las Der licias como lo fue en Mina Plomosas. Los amonoides y fusulínidos están, localmente, bien conservados.

Poco se conoce acerca de Potrero de La Mula, en donde Kellum et al (1936, p. 577) encontraron granito asociado con diques de hornblenda; Flawn y Díaz G. (1959, p. 226) sugirieron que la edad del granito es precretácica, probablemente premesozoica.

De acuerdo con Baker (Böse, 1923, p. 135), cerca de la Sierra del Carmen, unas capas aptianas descansan en esquistos precámbricos. De acuerdo con Flawn y Maxwell (1958, p. 2248), las rocas metamórficas están compuestas de filita de sericita-muscovita-clorita o de esquisto de grano fino e interestratos delgados de esquisto filítico y mármol. Flawn y Díaz G. (1959, p. 226) sugirieron una edad del Precámbrico tardío o Paleozoico temprano.

CONODONTOS Y RESIDUOS INSOLUBLES

En busca de conodontos se atacaron aproximadamente 215 muestras con ácido acético diluido en 7 partes de agua. Debido a que los conodontos son tan escasos, todos los residuos se conservaron en lugar de separarlos por flotación. De las 215 muestras, menos de 75 tuvieron fragmentos de conodontos, y solamente 60 muestras dieron conodontos identificables hasta el nivel genérico. La Figura 5 muestra el alcance de los conodontos en el área cubierta por el mapa.

La Figura 6 muestra la abundancia relativa de conodontos y el número de muestras examinado en cada uno de las unidades. Icriodus fue el género más abundante. Las capas más prolíficas en conodontos son de la localidad BA de la Unidad 2 y estrato 20 de la SM 9. En el área de Plomosas los conodontos están casi ausentes en los estratos del Silúrico Tardío y Devónico Temprano y son escasos en todos los estratos silúricos. Probablemente los conodontos son abundantes en parte del Pensilvánico, pero debido a que a la Unidad 4 se le asignó la edad por fusulínidos, pocas muestras pensilvánicas fueron atacadas en busca de conodontos. Durante el Pérmico vivieron pocos géneros de conodontos y se optó por no atacar muestras de este período.

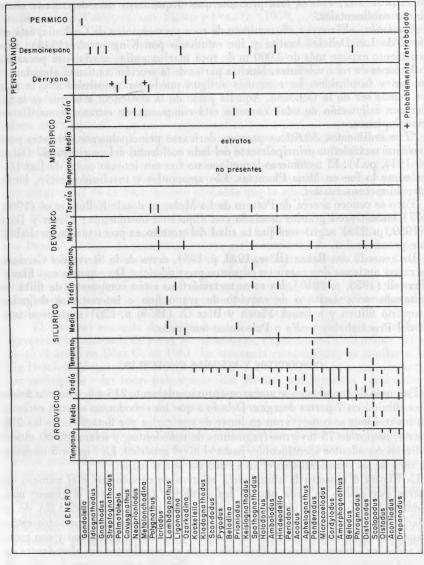


FIGURA 5,-Distribución de conodontos en el área estudiada.

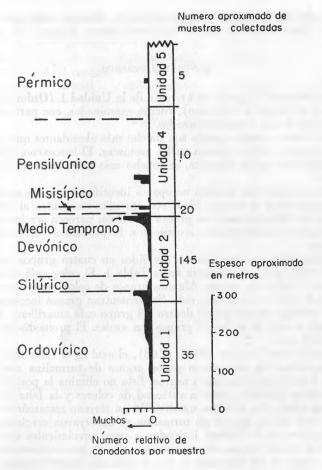


FIGURA 6.—Abundancia relativa de conodontos.

Los residuos insolubles contuvieron muchos otros fósiles y minerales. Son comunes los crinoides columnares, los fragmentos de trilobites y braquiópodos, así como las espinas de equinoides; los ostrácodos silicificados son numerosos en algunas capas misisípicas. Los residuos de rocas del Ordovícico Medio y Tardío son distintivos debido a que contienen fragmentos de esponjas (?), algunos gasterópodos pequeños y pelecípodos, así como un coral similar a Syringopora. Este coral fue observado solamente en residuos insolubles.

Las secciones delgadas no muestran biotita hexagonal o glauconita, pero los residuos del Ordovícico Tardío y la mayor parte de las rocas silúricas contienen trazas de estos minerales.

Con suficiente material y experiencia, la edad de cualquier parte de la sección de Mina Plomosas puede ser determinada a partir de sus residuos insolubles.

MINERALES PESADOS

Veinte secciones delgadas de arenisca de la Unidad 1 (Ordovícico), Unidad 5 (Pérmico) y Unidad 6 (Jurásico), fueron examinadas, con particular atención en el contenido de los minerales pesados.

Los minerales pesados opacos son mucho más abundantes que los minerales pesados no opacos; esto es común en las areniscas. El leucoxeno, que es un producto de alteración de la ilmenita, es mucho más abundante que la magnetita o hematita.

Los únicos minerales pesados no opacos identificados en las secciones delgadas son la turmalina y zircón. Estos son los más resistentes al intemperismo,

En sección delgada todos los granos de zircón parecen ser incoloros, tienen pocas inclusiones y no muestran crecimientos. El promedio del tamaño de grano es 0.080 mm.

Los granos de turmalina fueron divididos en cuatro grupos principales de diferentes colores, según se muestra en la Tabla 1. El color café olivo moderado (5Y4/4) es el color más común. Algunos granos de color verde claro caen en el grupo general verde olivo a olivo café. Se encuentran granos incoloros y un grano amarillo naranja que se colocó dentro del grupo café amarillento. En el grupo verde azulado a azul, 8 de los 17 granos son azules. El promedio del tamaño de grano es 0.106 mm.

De acuerdo con Krynine (1946, p. 68), el azul es el color típico de la turmalina pegmatítica. Se observaron pocos granos de turmalina con inclusiones abundantes y sin granos rosados o negros. Esto no elimina la posibilidad de una fuente de origen granítico, pero la variedad de colores y la falta de inclusiones en los granos estudiados es más sugestiva de un terreno metamórfico inyectado.

En el 45% de los granos de turmalina se observaron crecimientos autigénicos. Los granos de la Unidad 1 tienden a tener crecimientos menores y menos frecuentes que los granos de las Unidades 5 y 6. Los crecimientos más grandes en los granos de las Unidades 1, 5 y 6 alcanzan respectivamente 0.03 mm. 0.07 mm y 0.20 mm. Los crecimientos en los granos observados en sección delgada de la SM 6 (la parte más antigua de la Unidad 6) son grandes; mientras que los crecimientos en los granos de la SM 7 (la parte más joven de la Unidad 6) son de menos de 0.02 mm de largo. Los crecimientos de la Unidad 6 son de color verde pálido o incoloros. Los colores del crecimiento en las Unidades 1 y 5 son más variables. SD 40 de la "formación verde" tiene un crecimiento que es azul moderado (5B5/6).

Generalmente el tamaño de los crecimientos parece variar directamente con la porosidad de la arenisca, lo cual sugiere crecimientos posdeposicionales y contraría la sugestión hecha por Krynine (1946, p. 73) de que los crecimientos son de edad sedimentaria temprana. Los colores variables en los crecimientos en las Unidades 1 y 5 también sugieren edades diferentes de crecimiento (esto es, fluidos de diferente composición química).

TABLA 1.—Tipos de turmalina en las Unidades 1, 5 y 6

Sección delgada número	Azul-verdoso a azul	Café mediano a café obscuro	Verde olivo a café olivo	Café amarillento
		Unidad 1		
6-1-25	5	2	9	5
6-2-325 6-3-20 7-4-25		2 2 1	2 4 1	3
7-4-25	1		3	1
	6	5	19	12
		Unidad 5		
40 301 49	1		$\frac{2}{7}$	2 2
63 72		l ninguna	2	2
183	1	Illiguna		
	2	1	11	4
		Unidad 6		
2-5-3 2-5-15	1	1		1
2-7-0	2	4.		ĩ
2-7-80	1	3	5	
2-7-100	1	1	3	
8-11-5 8-9-2	1 2	1	9	,
9-17	1	1	3 2	1
9-15	Y		4	1
	-	-	-	
	9	10	13	4
Totales	17	16	43	20

Las proporciones relativas y el mismo diámetro general de los diferentes granos de turmalina y zircón de color, dentro de las diferentes unidades, sugiere la misma área general de origen o un retrabajamiento del material. Ciertamente algunos de los granos deben de haber sido retrabajados, aunque no se han encontrado crecimientos que estén redondeados.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

Como comparación, seis separaciones de minerales pesados se hicieron usando tetrabromoetano (D=2.95). Este método fue generalmente insatisfactorio, de bido a que la mayoría de la arenisca, cuando menos en parte, está cementada con sílice y es difícil de separar.

Algunos resultados de la separación de los minerales pesados difieren de

los resultados obtenidos en las secciones delgadas.

Los minerales opacos dominan sobre el conjunto de minerales pesados, aunque el leucoxeno es relativamente raro. La magnetita o la ilmenita son más abundantes, excepto en una sola preparación de la "formación verde" en donde la hematita especular es más abundante (ejemplar de mano 149, el cual no se estudió en sección delgada).

Como resultado del estudio de la separación de minerales pesados, se encontró que los granos de zircón son más abundantes que los de turmalina, en una relación de 2 ó 3 a 1. Esta es probablemente la relación correcta. Se encontraron cuatro granos de rutilo; uno con un crecimiento. Varios granos de zircón tienen crecimientos; el color de la mitad de los granos es lila.

Posiblemente algunos de los granos de leucoxeno fueron disueltos por el ácido usado al intentar el disgregamiento de la muestra; la capa delgada del leucoxeno puede también haberse removido de otros granos. Esto explicaría la variación en abundancia del leucoxeno al usar los dos métodos.

PETROLOGÍA SEDIMENTARIA

Las secciones delgadas de arenisca y limolita de las Unidades 1, 5 y 6 se han nombrado de acuerdo con el esquema de clasificación adoptado por Folk (1954, p. 344). Las secciones delgadas de caliza, las cuales están dominantemente compuestas de microespato (Folk, 1959, p. 1), no se nombran para evitar repetición. Sin embargo, algunas de las otras terminologías de carbonatos usadas por Folk (1959) se ha usado en donde se consideró apropiado. Para expresar los porcentajes de minerales de las secciones delgadas, se usan tablas de composición petrográfica. El porcentaje incluye los minerales que componen los fósiles; por lo que "35 equinodermos" (Tabla 2) significa que los equinodermos constituyen el 35% del área total de la sección delgada; pero el 85% de esta misma área total está compuesta de calcita espática y el 15% está compuesto de arena de grano medio.

UNIDAD 1

DEFINICIÓN

La Unidad 1 contiene las rocas más antiguas expuestas en el área del mapa. La base de esta unidad es un contacto de falla en la SM 8 y la SM 9 y es un contacto subaéreo en un anticlinal invertido por completo en la SM 2. Actual-

suma 100%, incluyendo los fósiles Tabla 2.—Unidad 1: Composición en porciento composición mineral

Sección delgada número	Calcita espática recristalizada (.02 - 2.0 mm)	Microespato (.00502 mm)	Dolomita	Dolomita Terrígeno y tamaño	o Varios	Fósiles
2-5-3	13	22		85 arena media	-	
2.5.15				94 arena media	5 sericita	
2-6-20	65	10		25 arena muy fina		1 pelecípodo 10 equinodermos
2.7.0	44	60		52 arena muy fina	1 sericita	2 equinodermos
2.7.100				40 arena muy fina		
2-8-25				60 arcilla 80 arcilla 90 limo		
2-8-30	17	30		50 arcilla 1 limo	2 clorita	2 equinodermos 7 pelecípodos
2.9.0	7	38	30	25 limo		1 equinodermo
2-9-50	5 23	74.		20 arcilla 5 arcilla	1 pedernal	1 equinodermo 2 corales
2-10-0	6	65		25 arcilla		1 equinodermo
2-10-110	83	15		1 limo	1 pedernal	1 pelecípodo 25 equinodermos
2-10-140	33	62		15 arcilla		3 equinodermos

l equinodermo l equinodermo l equinodermo	35 equinodermos 10 equinodermos 1 braquiópodo	y timobina		5 equinodermos 1 equinodermo	13 equinodermos	
	trazas de clorita café		10 venas de cuarzo		1 sericita 2 pedernal 3 pedernal 1 sericita 5 venas de	cuarzo trazas de sericita
10 arcilla 10 limo	55 arcilla 15 arena media 10 arcilla 1 arena fina	90 arcilla 10 limo 25 arena fina	73 arena fina	3 arena muy fina 13 arcilla 92 arena media	88 arena muy fina 2 arcilla 1 limo 94 arena media	77 arena media 92 arena fina
1		10	ro	20 15	-	œ
99 84 84	73	10		45	88	က
1 59 21	85 16	45	10	35 26	10 56	20
2-10-160 2-10-250 2-10-302	2-12-20 2-12-30	2-12-30	2-13-40	2-14-10 2-14-150 8-11-5	8-9-2 8-1-basal 9-17	9.15 9.8.0

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

mente en 6.55' N - 17.2' W, existe un poco de caliza dolomítica más antigua que la base de SM 2, pero probablemente no más antigua que la base de SM 8.

La cima de la unidad está en la parte superior de la arenisca ordovícica más alta, la cual es la capa marcadora más prominente de la parte ordovícica de la sección, Bridges y DeFord (1961, fig. 2) colocaron la cima de la unidad 1, 85 pies más arriba, en la base de la caliza con pedernal delgado que se encuentra en la base del estrato 3 de la SM 2.

ESPESOR Y DESCRIPCIÓN

El espesor de la roca sedimentaria no expuesta que yace sobre el basamento precámbrico y el espesor de la roca sedimentaria más antigua que la Unidad 1, son desconocidos. El espesor expuesto de roca medida en la SM 2, SM 8 y SM 9, son, respectivamente, 265, 280 y 264 m. Otros 60 ó 90 m de rocas más antiguas están presentes en 6.55' N - 17.2' W.

La Unidad 1 está caracterizada por caliza poco lutítica con pedernal. En algunas partes la unidad contiene pequeñas manchas de dolomita, las cuales son conspicuas. También existen secciones gruesas con caliza pura, capas de lutita, dos capas prominentes de arenisca en la cima y lentes menores de dolomita cerca de la base. La composición de las secciones delgadas examinadas, de la Unidad 1, se suman en la Tabla 2.

La caliza es dominantemente microespato (Folk, 1959, p. 32) con lentes y en colores más claros de gris, mientras que las manchas dolomíticas son de un color herrumbroso que varía a amarillo naranja. El color de la lutita varía de olivo grisáceo a negro verdoso y a negro grisáceo. El color de la arenisca varía de olivo pálido a blanco con muchas manchas de hematita; dicha arenisca se intemperiza en varios tonos de café.

La lutita está en estratos delgados; la caliza y la arenisca, en estratos medianos a gruesos.

La caliza es dominantemente microespato (Folk, 1959, p. 32) con lentes y augen metamórficos de caliza espática recristalizada. Varía de 2 mm a 2.0 m. La persistencia del microespato parece indicar que también se ha desarrollado por recristalización incipiente. En otras palabras, toda la caliza en la Unidad 1 fue originalmente micrita. La dolomita varía de 0.02 a 0.12 mm, con promedio de 0.05 mm. La lutita contiene pocos fragmentos de mica reconocible y parece también estar compuesta de ilita.

Toda la arenisca es ortocuarcita de acuerdo con la clasificación hecha por Krynine (1948, p. 149). Con excepción de algunos granos de minerales pesados de turmalina y zircón, los granos de tamaño de arena son enteramente de cuarzo.

El promedio del tamaño de grano varía de 0.09 a 0.28 mm. Esto es equivalente a arena de tamaño variable de muy fina a media, en la escala de Wentworth. La clasificación es de regular a buena; los granos son redondeados a subangulares, y en algunos lugares, una mezcla de ambos.

Las secciones delgadas arenosas de la Unidad 1 se clasifican como sigue:

SD 2-5-3 Arena media a fina: ortocuarcita madura, altamente calcítica.

SD 2-5-15 Arena media a fina: ortocuarcita madura, sericítica.

SD 8-11-15 Arena media: ortocuarcita madura, sericítica.

GEOLOGIA DEL AREA DE PLOMOSAS, CHIHUAHUA

- SD 9-17 Arena media a fina; ortocuarcita submadura, poco sericítica y con manchas de hematita.
- SD 2-7-80 Arena fina: ortocuarcita madura altamente sericítica.
- SD 2-7-100 Lutita arenosa muy fina:
- SD 8-9-2 Arena muy fina: ortocuarcita madura calcítica.
- SD 9-15 Arena media: ortocuarcita madura altamente calcítica con manchas de hematita.
- SD 9-8-0 Arena fina: ortocuarcita madura poco dolomítica con manchas de hematita.
- SD 2-13-23 Caliza arenosa fina.
- SD 2-13-40 Arena fina: ortocuarcita calcítico-sericítica, madura, poco dolomítica.

Mucha de la arenisca está cementada con sericita. McBride (1961) sugirió que la sericita se formó por metamorfismo incipiente de la lutita contenida en los intersticios existentes entre los granos de arena. La lutita pura no tiene sericita, pero las lutitas arenosas o limosas sí tienen, cerca de los granos de cuarzo. Probablemente se necesite un poco de SiO₂ para producir sericita a partir de lutita, con poco metamorfismo. La sericita, como el microespato, puede representar el primer paso en un metamorfismo incipiente.

RASGOS ESPECIALES

Cuerpos biohérmicos.—La caliza dolomítica más antigua, cercana a la SM 2 (6.55' N·17.2' W), tiene tres o cuatro cuerpos biohérmicos cerca de la base, los cuales son similares, aunque más pequeños que aquellos de la Formación Wilberns del centro de Texas (Dunbar y Rodgers, 1957, p. 180). El cuerpo más pequeño es de 0.30 mm de diámetro; el más grande es de 1 m de alto por 1.50 m de ancho. Mark Wilson (1961) estableció que él ha visto cuerpos biohérmicos similares en rocas del Ordovícico Temprano de Nuevo México. King (1937, p. 27) también menciona "estructuras obscuras parecidas a arrecifes" en el miembro Monument Spring de la Caliza Marathon.

Fuente de origen de la arenisca.—La ausencia de feldespastos y fragmentos de rocas metamórficas en la arenisca, indican una fuente sedimentaria o una quietud general y abrasión prolongada de los detritos provenientes de cualquier fuente. Las ortocuarcitas son típicas de las areniscas que se han desarrollado en áreas de bajo relieve en un período de quietud. Esto sucede particularmente en las areniscas ordovícicas de la región central de los Estados Unidos. La interpretación de la fuente de origen es difícil. En las secciones delgadas de la arenisca de la Unidad 1, se encuentra cuarzo no ondulante en cantidades que doblan las del cuarzo ondulante. No se observó cuarzo volcánico. Como en la arenisca de la Unidad 1 solamente están presentes algunos granos de cuarzo y unos pocos granos de los minerales pesados más resistentes, solamente se puede tener una idea aproximada respecto a la fuente de origen.

Rumbo del depósito.—Como se sugiere en el capítulo de Geología Estructural, los tres afloramientos precarboníferos originalmente estaban localizados en los ápices de un triángulo equilátero a unos 16 km uno de otro. La posición relativa

de estos tres afloramientos precarboníferos es, pues, ideal para determinar el rumbo del depósito de cada unidad. El proceso es vagamente comparable con el de determinar el rumbo de las capas en un problema de los tres puntos de geología estructural. El objeto es el determinar el rumbo general de una línea a lo largo de la cual existieron condiciones similares de depósito. Esto es únicamente una generalización.

Se piensa que las SM 9 y SM 2 estén más cercanas al cratón que SM 8 por las siguientes razones: (1) en la Unidad 1 las capas de arena son más gruesas en la SM 2 y SM 9 que la SM 8, suponiéndose que el engrosamiento fue hacia la costa; (2) cada estrato numerado de la SM 8 es más delgado que el estrato correspondiente de la SM 2 y la SM 9, mientras que las rocas más fosilíferas de la SM 9 y la SM 2 indican aguas más someras; (3) la ausencia de diastratificación en las arenas y la ausencia en SM 8 de depósitos de tipo de laguna sugiere un ambiente diferente al cercano a la costa; (4) el contenido de sericita (originalmente matriz arcillosa) de la SM 9 a la SM 2 y a la SM 8; (5) en las areniscas inferiores, en las cuales domina el cementante de calcita, ésta aumenta y la sericita disminuye de la SM 8 a la SM 2 y a la SM 9; (6) en la arena inferior, el arredondamiento aumenta de la SM 8 a la SM 2 y a la SM 9.

Las condiciones de depósito en la SM 9 son marcadamente diferentes a las prevalecientes en la SM 9 y la SM 2. La SM 9 parece indicar condiciones de depósito un poco más profundas que la SM 2, de tal manera que el rumbo de depósito parece haber sido ENE. Probablemente la línea de costa se encontraba a menos de 80 km de distancia, durante el tiempo de depósito de la Unidad 1.

PALEONTOLOGÍA

Gran parte de la Unidad 1 es poco fosilífera. Los fósiles más característicos son los gasterópodos *Palliseria* y *Maclurites*. En la SM 2 el *Palliseria* es abundante a través de unos 30 m de sección; en la SM 9, a través de unos 22 m de sección; en la SM 8 está presente solamente en 12 m de sección. *Maclurites* también está presente a través de un gran espesor de roca en la SM 2; es más abundante en la SM 9 y está casi ausente en la SM 8.

Abundantes briozoarios y algunos braquiópodos pobremente conservados y grandes, posiblemente *Multicostella* y *Macrocoelia*, son característicos de las capas lutíticas que se encuentran un poco más arriba de la arenisca superior en la SM 9. La abundancia de los briozoarios disminuye de la SM 9 a la SM 2 y a la SM 8. Solamente un braquiópodo órtido, más pequeño que los mencionados anteriormente y de género diferente, se encuentra en la SM 2 y la SM 8.

Se identificaron los siguientes géneros de conodontos: Acodus, Amorprognathus, Aphelognathus, Belodus, Cordylodus, Phragmodus y Scolopodus. Belodus y Cordylodus son los más abundantes.

Al noroeste de la SM 2 y en 6.55' N · 17.2' W el fósil más antiguo que se identificó es el braquiópodo Archaeorthis? Desgraciadamente los individuos no están bien silicificados, y fueron parcialmente destruidos por el ácido durante la limpieza. Un braquiópodo, Hesperonomia?, se colectó del estrato 1 de la base de la SM 9. Ambos braquiópodos fueron identificados por Cooper, quien los consideró como de la misma edad.

GEOLOGIA DEL AREA DE PLOMOSAS, CHIHUAHUA

Algunos fragmentos de trilobita se encontraron cerca de la base de la SM 9; únicamente se encontraron fragmentos de crinoides en los 110 m inferiores de la SM 8. Se encontró *Eospongia*, cerca de la base de la SM 2. Ni Duncan (1961) ni Toomey (1962) están seguros de esta identificación.

Dos o tres especímenes del gasterópodo Lesuerilla, se encontraron en la parte superior de las rocas que contienen Palliseria. Un solo espécimen del coral Saffordophyllum, se encontró en la sección medida, localizado estratigráficamente entre el estrato que contiene Maclurites y Palliseria. En el intervalo que contiene gasterópodos se encuentran esponjas pequeñas de más o menos 2.5 cm, así como cefalópodos ortocónicos de 15 a 20 cm. En la SM 9 se encontraron Receptaculites y un trilobita Ceraurus?. No se vio ningún Receptaculites en la SM 2 o en la SM 8.

Se empleó un tiempo considerable buscando graptolites en las capas lutíticas de la Unidad 1, pero no se encontró ninguno; sólo se encontraron trazas de trilobitas.

EDAD

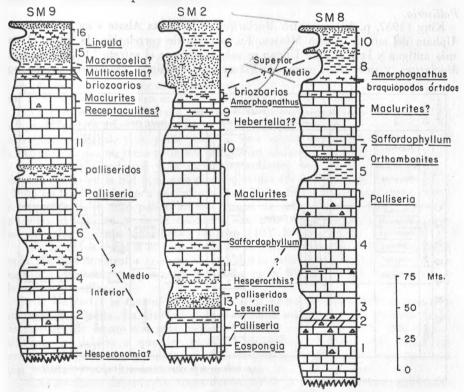
La edad de la Unidad 1 es del Ordovícico Temprano al Tardío (?). Los fósiles más antiguos que se identificaron, *Hesperonomia? y Archaeorthis?*, son correlacionables con los fósiles de la zona superior *Archaeorthis* de Pogonip, de acuerdo con Cooper (1961). Esta zona es aproximadamente equivalente, a la mitad superior de la Serie Canadiense.

De acuerdo con Yochelson (1960), *Palliseria* es un guía fósil para los estratos inferiores del Ordovícico Medio (Whiterock). *Hesperorthis?* y *Orthambonites* se colectaron de capas que son correlacionables. Cooper consideró *Hesperorthis?* como probablemente perteneciente a capas del Ordovícico Medio (1960) y *Orthambonites* como de capas Whiterock (1961).

Duncan (1960) comentó que *Eospongia* se encontró primeramente en las capas Chazy, pero no debe dársele ningún significado de edad al espécimen, debido a falta de conocimiento concerniente al alcance de estas esponjas ordovícicas. Duncan (1960) también estableció que *Saffordophyllum* se encuentra en estratos del Ordovícico Medio temprano, que pueden ser equivalentes en edad a los estratos Chazy.

De acuerdo con Yochelson (1960) *Maclurites* es un gasterópodo del Ordovícico Medio a Tardío. El espécimen de *Receptaculites* enviado a Duncan estaba tan mal conservado que sólo pudo deducirse que éste es más joven que Whiterock, o sea del Ordovícico Medio al Tardío (1960).

Las capas que contienen los braquiópodos de los que Cooper (1961) consideró posible que fuesen Multicostella y Machocoelia, se asignaron al Chazy superior o al piso Ashby del Ordovícico Medio, Ellison (1961) consideró a Amorphognathus como fósil-guía del Ordovícico Tardío. De cualquier manera, algunas de las capas que contienen Amorphognathus son correlacionables con las capas que probablemente contienen Multicostella y Macrocoelia. Las capas ordovícicas de la Unidad 1 (Figura 5), se caracterizan por una fauna variada de conodontos.


Las capas superiores de arenisca y las capas de lutita y caliza lutítica no contienen fósiles. No se encontró ninguna indicación de edad en ellas.

CORRELACIÓN

La Figura 7 muestra la correlación entre las tres secciones medidas en rocas precarboníferas. La caliza de estratos gruesos y la de estratos delgados se han diferenciado cuidadosamente. Para una descripción litológica más precisa, refiérase al apéndice sobre secciones medidas.

A pesar de la proximidad de las secciones medidas, las correlaciones dependen fuertemente de los fósiles, particularmente en *Palliseria*. Solamente los fósiles más importantes se mencionan.

La correlación con la sección de Marathon y la del sur de Nuevo México es difícil en vista de la diversidad de facies faunales encontradas y la escasez de fósiles en el área del mapa. En la carta de correlación ordovícica (Figura 8) el autor supone que los estratos expuestos cerca de Placer de Guadalupe representan un depósito continuo durante el Ordovícico. La fauna contenida en el estrato 1-10 y en el estrato 18-20 de la SM 9, puede ser correlacionada con la sección normal de Nueva York y Pensilvania; la correlación de los estratos 11-17 es en realidad problemática.

Símbolos litológicos en la fig. Il
FIGURA 7.—Correlación de las secciones medidas en la Unidad 1.

505/Bares

La edad relativa de los estratos 11-17 ha sido establecida arbitrariamente por la única razón de la conveniencia de que algunos de sus límites coincidan con los límites de edad. Los estratos 12, 13 y 14 se han unido porque contienen fauna similar en ellos. Estos estratos se correlacionaron provisionalmente con el Trenton pues contienen braquiópodos "Ashby" según Cooper y son correlacionables con capas que contienen conodontos del Ordovícico Tardío, de acuerdo con Ellison. La correlación con el Trenton representa un problema entre

"Ashby" y el Ordovícico Tardío (e. g. Nomesbil).

Las capas cercanas a Placer de Guadalupe, que contienen abundantes briozoarios (estratos 12, 13 y 14 de la SM 9), son correlacionables con las capas basales de la Maravillas que también tienen abundantes briozoarios. Los cuerpos parecidos a arrecifes que afloran al noroeste de la SM 2, pueden ser poco más antiguos que el estrato 1 de la SM 9, pero son generalmente correlacionables con él. El estrato 1 de la SM 9 parece ser correlacionable faunisticamente con el miembro dolomítico Monument Spring de la Caliza Marathon (zona de Archaeortis del Pogonip superior); el estrato 1 y las capas Monument Spring son de la misma facies.

En Nuevo México o en Marathon no se han reportado capas que contengan

Palliseria.

King (1937, p. 32) encontró Maclurites en la Lutita Alsate y en la Dolomita Upham del sur de Nuevo México. En la carta de correlación, la lutita 11 es más antigua y la Dolomita Uphan es más joven que el estrato 11 que contiene Maclurites, y que aflora cerca de Placer de Guadalupe. Maclurites parece no

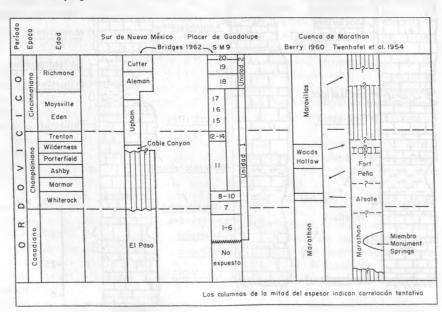


FIGURA 8.—Correlación ordovícica.

ser un buen fósil para basar en él una correlación entre el sureste de los Estados Unidos y el norte de México.

Probablemente ninguno de los estratos de arenisca de la Unidad 1 sean equivalentes a la arenisca Cable Canyon de Nuevo México.

UNIDAD 2

DEFINICIÓN

La Unidad 2 es predominantemente caliza. Cerca de la base, caliza lutítica, caliza con pedernal, y la parte silúrica, una caliza intraclátsica; en la SM 9 la cima de la Unidad 2 está en la parte superior de una caliza gruesa que contiene, generalmente, pedernal. Está en duda si hay o no discordancia en la cima de la Unidad 2 en las SM 2 y SM 8 pero esa discordancia está presente definitivamente en la SM 9.

Bridges y DeFord (1961, fig. 2) colocaron la base de la Unidad 2 más arri-

ba, a 25 m de distancia.

ESPESOR Y DESCRIPCIÓN

Los espesores medios de la Unidad 2 en la SM 2 y SM 1, SM 8, y SM 9 son, respectivamente, 255, 190 y 230 m. (Unicamente se agrega al espesor medido de la Unidad 2 en SM 2 una capa de pedernal perteneciente a SM 1). Debido a la presencia de un pliegue sinclinal en la parte inferior de la Unidad 2, en SM 2, el espesor verdadero es 30 m menor que los 285 m medidos.

La Unidad 2 es de litología más variable que cualquier otra roca precarbonífera de los tres afloramientos. En la SM 8 y la SM 2 la parte devónica es una caliza con pedernal, y la parte silúrica, una caliza intraclástica; en la SM9

la caliza devónica no tiene pedernal y la caliza silúrica es dolomítica.

La caliza con pedernal y la caliza intraclástica son gradacionales del gris obscuro (N 3) en la SM 8, al gris obscuro medio (N 4) en la SM 2, al gris claro (N 6) en la SM 9. La roca devónica de la SM 2 y SM 8 se caracteriza por tener manchas de color rojo pálido en los planos de estratificación. Los colores de la caliza dolomítica y de la dolomita son más variables pero generalmente son de color naranja amarillento obscuro (10Y R6/6).

En la SM 2 y SM 8 la roca devónica es generalmente de estratos medios y en la SM 9 es de estratos gruesos. En la SM 8 la caliza intraclástica es de estratos medios a delgados, y de estratos variables en la SM 2. La roca ordovícica es

de estratos medios.

En la Unidad 1 la mayor parte de la caliza es microespato, aunque contiene un poco de micrita. La Unidad 2 es de calcita espática menos recristalizada, los cristales de espato son más pequeños que los de la Unidad 1. Esto probablemente es debido a que las muestras de calcita elegidas para hacer las secciones delgadas de la Unidad 2, fueron principalmente colectadas en zonas más falladas y más intensamente plegadas que las de la Unidad 1.

Las secciones delgadas de rocas devónicas de la SM 9 contienen más fósiles

que las secciones delgadas de rocas devónicas de la SM 2 v SM 8.

Tabla 3.—Unidad 2: Composición en por ciento. (La composición mineral suma 100%, incluyendo los fósiles)

Sección delgada número	Calcita espática recristalizada (.02 - 2.0 mm)	Microespato (.005 · .02 mm) Micrita (.001 · .005 mm)	Dolomita	Terrigeno y tamaño	Varios	Fósiles
1.2	8	5 microespato	15		72 pedernal	
2-2	(relleno de veta) 20 (relleno de veta)	5 microespato 10 micrita	ល		60 vena de cuarzo	
2-3-305 2-3-531	88	74 micrita 10 microespato 87 microespato		25 arcilla 1 arena m.f. 1 limo	l pedernal l pedernal	35 equinodermo 2 equinodermo
2.3.760 2.4.4	16	80 microespato	20	61 arcilla 15 limo	3 limonita (manchas)	l braquiópodo y equinodermo
2-4-7 2-4-15 8-16-182	32 60	30 microespato 65 microespato 20 microespato	55	15 arcilla 2 arcilla 10 arcilla	1 limonita	l braquiópodo
8.15.5(2)	15	55 microespato		10 arcilla 10 limo		
8-15-5(1)	п	58 microespato		15 arcilla 15 limo	1 pedernal	s equinodermo 5 equinodermo 1 trilobite 2 equinodermo
9E-464 9E-570 9E-575	33 10 16	67 microespato 20 micrita	70			1 trilobite 10 equinodermo 15 equinodermo 1 trilobite
9E-667	33	52 microespato	15			30 equinodermo 3 tribolite
302		60 micrita	10	15 arcilla 15 limo		
BA	70	30 microespato				3 braquiópodo

Muchos de los rombos de "dolomita" tienen manchas de limolita lo cual puede indicar que el mineral es en realidad ankerita. De acuerdo con Folk (1961a, p. 145) la roca es dolomita finamente cristalina pues el promedio del diámetro de los cristales es de 0.05 mm. En la SD 2-4-4 están reabsorbidos algunos rombos de dolomita. La dolomita en la SD 1-2 (SM 1, estrato 2) es euhedral y no está manchada con limonita; es de tamaño de grano variable (hasta 0.16 mm) y está reemplazando al pedernal. La mayor parte del pedernal del área contiene de 5 a 10% de rombos de dolomita. La concentración biológica del SiO₂ probablemente sea la fuente de origen del sílice presente en el pedernal. Posiblemente el magnesio de la dolomita tenga la misma procedencia.

RASGOS ESPECIALES

Caliza intraclástica.—La caliza intraclástica es una de las rocas más importantes e interesantes del área de Plomosas; alcanza su mayor desarrollo en la SM 8, está presente en la SM 2 aunque no tanto como en la SM 8 y está ausente en la SM 9.

La mayoría de los clásticos son de forma ovoidal y son parecidos a las chinas aplastadas de un conglomerado. En la SM 8 la longitud de los clásticos varía de 25.0 mm a 75.0 mm; en una lente en la SM 2 varía de 100.0 mm a 125.0 mm. Tanto los clásticos como la matriz son de microespato (posiblemente micrita antes del metamorfismo), la matriz es usualmente más obscura y contiene más limo y mayor cantidad de fragmentos de fósiles.

Según Folk (1959, p. 1-5) esta roca sería una intrabiomicroespatorudita ("intra" implica caliza intraclástica; "bio", empleado para indicar la existencia de fragmentos de fósiles; "microespato", el tipo principal de roca; "rudita", porque el diámetro de los clásticos es mayor de 1 mm). Según Folk (1961b) cuando menos parte de esta roca tiene más de 50% de material terrígeno y es simplemente una lutita calcárea.

Folk (1959, p. 20) atribuyó la caliza intraclástica al rompimiento penecontemporáneo y redepositación de los sedimentos carbonatados débilmente consolidados. El rompimiento usualmente resulta de la acción de las olas (como en el curso de las tormentas) "...o posiblemente de una inestabilidad tectónica de la cuenca de depósito" (Folk, 1961a, p. 138). La caliza intraclástica de Mina Plomosas puede ser el resultado de un deslizamiento de masas o de un arrastre por aumento de la pendiente de la cuenca. Esto no implica una corriente de turbidez puesto que falta gradación en las capas. Probablemente los clásticos no hayan sido movidos más de unos 8 km o posiblemente menos de 30 m.

La evidencia es contra la idea de excavación. La imbricación de las partículas en la matriz indica flujo. Los clásticos están limpios y generalmente no contienen limo. ¿Pueden los "organismos que hayan producido las oquedades en los sedimentos" haberse comido el limo y la arcilla? Donde la caliza intraclástica es menos prominente, se presenta en lentes delgados y discontinuos.

La evidencia observada está también en contra de la idea de que la caliza intraclástica haya sido formada por la acción del oleaje. Los clásticos no son angulares y muchos son elongados. En la formación de los conglomerados que tienen los cantos aplastados, la acción del oleaje va apilando los fragmentos

de tal manera que éstos quedan depositados angularmente a la estratificación. Los clásticos de la Unidad 2 son invariablemente paralelos a la estratificación.

Es difícil probar que la caliza intraclástica se haya formado abajo del nivelbase del oleaje. El punto principal es que la intramicrita, al contrario de la intraespatita, es relativamente rara (Folk, 1959, p. 20). La mayoría de las calizas intraclásticas se han depositado en aguas someras por la acción del agua y tienen una matriz de calcita espática. En la SM 8, el estrato 15, que tiene 25 m de espesor, incluye la mayoría de la caliza intraclástica. Suponiendo que no exista discordancia, los 25 m de espesor representan toda o casi toda la roca silúrica de esta sección.

Hundimiento intraformacional. En la parte devónica de la SM 2, aproximadamente 135 a 150 m bajo la cima de la Unidad 2, afloran capas muy plegadas de pedernal a ambos lados del cañón. El hundimiento o deformación estructural dobló o plegó estas capas de pedernal. El hecho de que las capas subyacentes y suprayacentes no estén plegadas similarmente, parece regir la deformación estructural.

El hundimiento parece tener una dirección hacia el sur. Probablemente las capas plegadas de pedernal y las de caliza interclástica se desarrollaron de la misma manera.

Rumbo del depósito. Los cambios litológicos y faunales entre capas contemporáneas de las tres secciones medidas en la Únidad 2, son marcados en cortas distancias, exceptuando las capas del Ordovícico Superior.

Las capas silúricas y devónicas muestran un rumbo de depósito definido. La SM 9 está compuesta de caliza de color gris claro que contiene coral, con algunos lentes dolomíticos y sin pedernal. La SM 2 no tiene dolomita, tiene menos corales, más braquiópodos, y una cantidad moderada de pedernal. La SM 8 es más delgada y está compuesta de caliza de color gris obscuro que contiene braquiópodos y una gran cantidad de pedernal. El hundimiento es, general, de dirección sur. Todo esto sugiere que la dirección de la inclinación de las capas es de la SM 9 a la SM 2 y a la SM 8; de ser así, el rumbo de depósito es noreste.

PALEONTOLOGÍA

Los fósiles característicos de la Unidad 2 son los corales, particularmente Favosites, y los braquiópodos, Levenea, Leptocoelia, Acrospirifer y Atrypa, en el Silúrico y Devónico. Los fósiles diagnósticos del Silúrico son Halysites, que es raro, Entelophyllum, que es más común, y un solo espécimen del braquiópodo Lissatrypoidea decaturensis (Amsden) (Oliver, 1960, y Cooper, 1961). En las capas del Ordovícico Superior, los fósiles más característicos son los braquiópodos Sowerbyella y Zygospira. Especímenes grandes del braquiópodo Lepidocyclus son abundantes en la base del estrato 20 de la SM 9 pero están ausentes en las otras dos secciones, con una posible excepción en la SM 8.

Fósiles del Ordovícico Superior.—De la SM 9 y afloramientos cercanos, se colectaron los braquiópodos Plaesiomys, Zygospira, Sowerbyella, Diceromyonia, Lepidocyclus, y Thaerodonta. Muchos conodontos fueron colectados de la parte

inferior del estrato 20, de la SM 9 (nomenclatura original 9-dol-2; "dol" es lo mismo que "estrato 20"). Los siguientes géneros se identificaron: Acodus, Ambolodus, Amorphognathus, Belodina, Belodus, Cordylodus, Drepanodus, Microcoelodus, Oistodus, Panderodus, Periodon, Pygodus, Scandodus y Scolopodus. No se encontraron corales.

De la SM 2 y afloramientos cercanos, se colectaron los braquiópodos Sowerbyella, Rafinesquina, Zygospira? y Conotreta. Conotreta (Colección EH) se colectó a unos 7 m sobre la caliza con pedernal que se encuentra en la base del estrato 3 de la SM 2. Los siguientes géneros de conodontos se identificaron: Acodus, Ambolodus, Amorphognathus, Aphelognathus, Belodus, Cordylodus, Distacodus, Drepanudus, Hindeodella, Keislognathus, Microcoelodus, Oistodus, Panderodus, Prieoniodus, Scolopodus, Spathognathodus, así como una forma intermedia entre Amorphognathus y Kockelella, posiblemente un género nuevo. Todos los conodontos se colectaron encima de la caliza con pedernal de la base del estrato 3 de la SM 2. Esta zona de conodontos debe ser correlacionable con el estrato 20 de la SM 9. Un espécimen de Hindeodella también se encontró en la caliza con pedernal. Un coral córneo indeterminado (espécimen FT), se encontró a 3 m sobre la caliza con pedernal. Otro coral favositoide se encontró en la base de la caliza con pedernal (espécimen 2-3-815). De la colección EH (arriba mencionada) se identificó Streptelasma. Estos fueron los únicos corales observados en o cerca de la SM 2 en capas del Ordovícico Superior de la Unidad 2.

De la SM 8 y afloramientos cercanos se colectaron los braquiópodos Sowerbyella, Zygospira, Diceromyonia, Conotreta?, Onniella?, y un posible Lepidocyclus. Los siguientes géneros de conodontos se identificaron: Belodus, Cordylodus, Drepanodus, Kladognathodus, Oistodus, Panaderodus, Periodon, Scolopodus, Spathognathodus, y la misma forma intermedia mencionada en la SM 2. La posición exacta de estos conodontos se indica en las secciones medidas. No se encontraron corales.

Fósiles silúricos.—De la SM 9 y afloramientos cercanos solamente un fósil se identificó como perteneciente al Silúrico. Este es el braquiópodo Trigonirhynchia cf. sulcata (Cooper), colectado 2 m sobre la base del estrato 20. No se encontraron otros braquiópodos. Solamente se atacó una muestra en busca de conodontos, y sin éxito. Los siguientes corales se identificaron: un coral heliolítido (espécimen FO) colectado 1.20 m abajo de la cima del estrato 20; corales favositoides (colección GF), colectado 1.50 a 3 m sobre el estrato 20; y Favosites sp. (espécimen GG), colectado 16 a 33 m encima del estrato 20 (Oliver, 1960).

De la SM 2 y afloramientos cercanos se colectaron los siguientes braquiópodos: Atrypa, Gypidula y Levenea. Los únicos conodontos encontrados son
Panderodus y Scolopodus. Los siguientes corales se identificaron: Entelophyllum
sp., Microplasma? sp., Heliolites sp., Favosites sp., así como corales córneos
indeterminados. De la colección BB, colectada en una hoja de cobijadura (6.2'
N-16.1' W), se identificaron Favosites? sp., Heliolites sp., y un coral rugoso
amplexoide, corales rugosos cyathophyllidos que pueden ser Disphyllum y Diplochone, corales rugosos hálidos? y un coral córneo. Debido a que el pedernal
del Ordovícico Superior se encuentra estratigráficamente más bajo y no muy lejos,

tal vez la posición estratigráfica sea cerca de 2-3-700 y ciertamente bajo 2-3-550. Un espécimen de Halysites fue observado en un canto grande en la cabecera

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

del arroyo en que se midió la SM 2.

De la SM 8 y afloramientos cercanos se identificaron los siguientes braquiópodos: Atrypa, un Camarotoechia pequeño, Coelospira aff. saffordi (Foerste), y una Composita (?) pequeña. Existe considerable controversia respecto a este último fósil. Cooper (1961) sugirió que debido a la diferente conservación ese braquiópodo cayó por error en su colección; la diferencia en conservación probablemente sea el resultado del intemperismo. Cooper también identificó Gypidula, Howellella, Isorthis sp., I. sugestiva de I. arcuaria (Hall y Clarke), Leptaena, Levenea, Lissatrypoidea decaturensis (Amsden), Merista, y Rhipidomella cf. R. hybrida (Sowerby). Ellison identificó conodontos de los siguientes géneros: Belodus, Cordylodus, Hindeodella, Lambdagnathus, Ligonodina, Ozarkodina, Panderodus, Prioniodus?, y Spathognathodus. Oliver identificó los siguientes corales: Halysites sp., Entelophyllum sp., Favosites sp., Heliolites, un coral cyathophylloide, y corales córneos indeterminados. Se encontraron fragmentos de Halysites solamente en la parte basal del Silúrico.

Fósiles devónicos.—De la SM 9 y afloramientos cercanos no se colectaron braquiópodos ni conodontos. Sin duda ambos deben estar presentes pero se empleó poco tiempo en su búsqueda; pocas muestras se atacaron en busca de conodontos. Los siguientes corales se identificaron: Favosites sp., Favosites (Emmonsia) sp., y un coral indeterminado posiblemente Alveolites. También

están presentes corales córneos.

De la SM 2 y afloramientos cercanos se identificaron los siguientes braquiópodos: Acrospirifer sugestivo de A. pinonensis (Meek). Atrypa, Leptaena, Leptocoelia y Levenea. Muchas muestras se atacaron con éxito buscando conodontos, excepto en los 25 m superiores de la Unidad 2. Los siguientes conodontos se identificaron: Distacodus, Icriodus latericrescens (Branson y Mehl), Ozarkodina, Panderodus, Scolopodus y Spathognathodus. Todos los conodontos pertenecen al género Icriodus. Son particularmente abundantes en el horizonte Acrospiriter (colección BA hecha en 6.1' N - 16.3' W) equivalente a los 3 m basales del estrato 2 de la SM 1. Los únicos corales encontrados son Favosites y corales indeterminados córneos.

En los planos de estratificación pueden verse unos pocos cefalópodos rectos del tamaño de un lápiz, sin estructura y con remanentes orgánicos de 0.03 a 0.07 m de largo. Se observaron varios fragmentos de trilopites (Phacops?) y

algunos briozoarios.

De la SM 8 y afloramientos cercanos, se colectaron los siguientes braquiópodos: Acrospirifer, Ambocoelia?, Atrypa, Camarotoechia? sp., Emanuella, Isorthis, Leptaena, Leptocoelia, Levenea, Metaplasia (o Emanuella), Rhipidomelloides sp., Skenidium?, y Strophonella sp. La parte inferior del Devónico Inferior generalmente no contiene conodontos, pero se encontró un buen espécimen de Spathognathodus. Pocas muestras de la SM 8 colectadas en la zona equivalente a la zona del Icriodus de la SM 2, se atacaron con ácido. Probablemente Icriodus sea igualmente abundante en la SM 8. Los Favosites y los corales córneos están casi ausentes excepto en la parte inferior. Phacops y un trilobite proétido

fueron identificados por Cooper. Se observó una esponja aunque la identificación es dudosa.

La mayor abundancia y el mayor alcance estratigráfico de Leptocoelia y Acrospirifer en la SM 8 pueden indicar que estos braquiópodos tuvieron preferencia por aguas menos someras o por un litotopo más silícico.

EDAD

La edad de la Unidad 2 es Ordovícico Tardío al Devónico Medio temprano. No existe duda acerca de la edad de las capas inferiores. Las formas particulares de Sowerbyella, Conotreta, Lepidocyclus, Plaesiomys y Zygospira, indican una edad del Ordovícico Tardío para esta unidad, de acuerdo con Cooper (1961). El también estableció que la combinación de Sowerbyella, Zygospira, Diceromyonia, Conotreta?, y Onniella? en 8-12-53, es probablemente del "Ordovícico Superior (Montoya?)". Amorphognathus también indica una edad del Ordovícico Tardío (Ellison, 1961).

Cooper (1961) dijo respecto a la Trigonirhynchia cf. sulcata,"... esto es un rompecabezas, pero parece más Silúrico que Ordovícico". Concerniente a los braquiópodos de 8-15-1 a 8-15-58, sugirió "... Silúrico (teniendo afinidad con la Formación Brownsport)". También comentó, en la misma carta, que el mejor indicador del Silúrico de la colección, es Lissatrypoidea. La edad de la Formación Brownsport es Silúrico Medio. Cooper consideró al espécimen EI = 2-3-760 (Atrypa) como del Silúrico, y sugirió (1960) que los braquiópodos pobremente conservados 2-3-720 son de edad devónica.

Oliver (1960) dijo que la colección de corales de 2-3-570 a 580 es "...del Silúrico Medio o Superior, basado en la presencia de Entelophyllum". Este mismo autor sugirió que los corales Entelophyllum y Halsytes colectados del

estrato 15 de la SM 8, definitivamente indican el Silúrico.

Cooper (1960) consideró los braquiópodos de 2-3-107 a 2-3-530 y 1-1-0 a 1-1-114 como devónicos; estableció que "Acrospirifer... se encuentra generalmente en el Devónico Inferior". Concerniente a los braquiópodos de 8-16-16 a 8-16-332, Cooper (1961) dijo "...Devónico (Devónico Inferior tardío o posiblemente Devónico Medio temprano, o ambos)", y sugirió (octubre 1960) que el espécimen GH 9E-400, Favosites (Emmonsia) sp., es "...probablemente del Devónico Inferior o Medio". Ellison (1961) estableció que Icriodus está considerado como un buen fósil guía del Devónico Medio pero no se conoce fauna de conodontos del Devónico Temprano en el suroeste de los Estados Unidos: también sugirió que Icriodus puede extenderse verticalmente hasta estratos del Devónico Inferior.

CORRELACIONES

La Figura 9 muestra las correlaciones locales. Con excepción de las capas del Ordovícico Superior, se hicieron pocas correlaciones. Probablemente las facies de pedernal devónico de la SM 2 y la SM 8 nunca estuvieron presentes en la

La correlación con la sección del Ordovícico Superior de Nueva York y

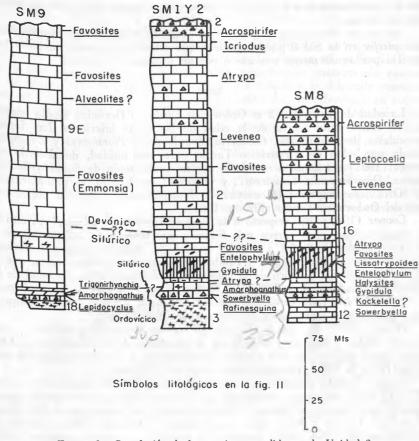


FIGURA 9.-Correlación de las secciones medidas en la Unidad 2.

Pensilvania (Figura 8) se hace fácilmente, pero la correlación con los estratos silúricos y devónicos (Figura 10) es difícil.

El depósito durante el Silúrico, hasta el Devónico Medio temprano, fue

probablemente continuo.

La base de la caliza intraclástica en la SM 8 está bien marcada; de cualquier manera, se piensa en la existencia de una discordancia debido a que la caliza intraclástica no se encuentra expuesta en todas partes en el mismo nivel estratigráfico. Lateralmente se acuña en la caliza no perturbada. El contacto entre la caliza no perturbada y la intraclástica está dentro de un intervalo estratigráfico de 1.20 m. En la SM 2 probablemente existe discordancia en la zona lutítica que subyace a la caliza intraclástica pues no se pudo establecer una superficie única. La evidencia de campo señala que la discordancia de la Unidad 2 de la SM 9 es poco probable.

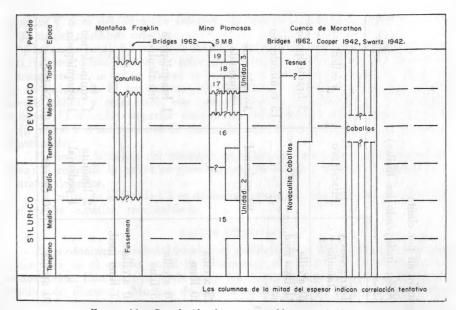


Figura 10.—Correlación de estratos silúricos y devónicos.

UNIDAD 3

DEFINICIÓN

La Unidad 3 es una unidad-mapa de capas poco resistentes, situada entre dos secuencias potentes de caliza: la Unidad 2 abajo y la Unidad 4 encima. Para la descripción, la Unidad 3 se divide en un miembro inferior y un miembro superior, separados por una discordancia que representa mucho del tiempo misisípico.

La Unidad 3 es parcialmente devónica, parcialmente misisípica, y parcialmente pensilvánica. El miembro inferior contiene algunas capas del Devónico Medio así como equivalentes de "Woodford". El miembro superior contiene algunas capas del Misisípico Superior y algunas capas del Pensilvánico Inferior.

La Unidad 3 es gradacional con la Unidad 4. En la SM 9 el miembro superior de la Unidad 3 suprayace discordantemente a la Unidad 2. En la SM 1 parte del equivalente del "Woodford", suprayace a la Unidad 2; el contacto es probablemente discordante. En la SM 8 las capas de caliza del Devónico Medio suprayacen a capas de caliza con pedernal de la Unidad 2; el contacto es probablemente discordante. En la SM 8 las capas de caliza del Devónico medio suprayacen a capas de caliza con pedernal de la Unidad 2; el contacto puede ser discordante.

ESPESOR Y DESCRIPCIÓN

La SM 9 contiene 33 m del miembro superior; la SM 1, 40 m del miembro

minerales suman 100%; incluyendo los -Unidad 3: Composición en por ciento composición

Fósiles	2 braquiópodo	15 equinodermo	3 espinas de equinoide		1 braquiópodo inarticulado		l equinodermo 1 braquiópodo	20 Styliolina
Misceláneo			82 pedernal				2 limonita 1 pedernal	20 cuarzo
Terrígenos y tamaño	20 arcilla	т што теа.		25 arcilla 10 limo	10 arcilla 15 limo	10 arcilla 1 limo med.		10 arcilla
Dolomita			10		****			
Microspar (.00502 mm)	72	80		65	64	89	85	70
Calcita espática recristalizada (.02 - 2.0 mm)	2	20	8		п		12	
Sección delgada número	1.5	1-4-5	1.4.5	1.3	1-3	8.18.2	8-17-0	DL

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

superior v 6 m del miembro inferior; la SM 8, 17 m del miembro superior y 33 m del miembro inferior.

La parte basal del miembro inferior, expuesta únicamente en Cerro Enmedio, es una caliza limosa de color gris obscuro medio (N4). En superficies intemperizadas, la caliza limosa es parecida a partes de la caliza con pedernal de la Unidad 2. El equivalente de "Woodford" es lutita de color gris claro, rosado pálido y café claro, con interestratos de pedernal negro en la parte inferior. El miembro superior consiste de caliza lutítica con manchas de color rojo pálido con interestratos de caliza de color negro grisáceo (N2), fácilmente fracturable.

Partes de la caliza del miembro superior, de color negro grisáceo es masiva; el resto de la caliza es generalmente de estratos medios. La lutita es de estratos delgados.

La caliza de la Unidad 3 es dominantemente microespato con sólo 5 a 10%

de calcita espática recristalizada.

RASGOS ESPECIALES

Discordancias.—Indudablemente el problema más difícil que el estratígrafo encuentra en el campo, es el de determinar si un contacto es concordante o discordante. Esto excluye desde luego las discordancias angulares relativamente fáciles de discernir. Muchas de las discordancias reportadas en la literatura son probablemente imaginarias.

En la base de la Unidad 3 de la SM 8 los siguientes criterios respaldan la existencia de la discordancia: un cambio de litología abrupto de la caliza limosa, a una zona de 0.60 m representada por material silícico, negro, café y con manchas de color de fierro, que puede ser el resultado del intemperismo del contacto entre las Unidades 2 y 3 (retrabajado?); fragmentos de braquiópodos grandes y probablemente acuñamiento de la SM 8 a la SM 1 (Figura 11).

El mejor argumento para sostener la existencia de una discordancia misisípica en la Unidad 3 es la extensión de la SM 8 sobre la SM 1 y la SM 9 (Figura 11). La Unidad 5 de la SM 1 está compuesta de material silícico y arcilloso, aparentemente retrabajado; contiene también fragmentos de conodontos devónicos con braquiópodos pensilvánicos.

Rumbo del depósito.—El rumbo del depósito es noroeste porque el mayor

entreplano está en la SM 9 y el menor está en la SM 8.

PALEONTOLOGÍA

Miembro inferior.—Los fósiles característicos del miembro inferior son Styliolina y Orbiculoidea. Styliolina es un fósil pequeño, calcáreo (aquí silicificado), en forma de cono, de afinidad incierta, comúnmente agrupado con los tentaculítidos. Orbiculoidea es un braquiópodo inarticulado.

Los fragmentos de Acrospirifer, Meristella, y Leptocoelia pueden ser todos

retrabajados. Cooper (1961) comentó que:

"Los dos lotes de EV son también desconcertantes y nadie espera que Leptocoelia ocurra junto con abundantes Orbiculoidea; una de las cajas contiene cuatro fragmentos de Leptocoelia...

Se identificaron los siguientes conodontos: Hindeodella, Icriodus latericres-

cens (Branson y Mehl), Polygnathus linguiformis (Hinde) y Spathognathodus.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHIJAHIJA

Algunos de éstos también pueden ser retrabajados.

Dos ostrácodos silicificados se encontraron inmediatamente encima de la probable discordancia de la base de la Unidad 3 en la SM 8. Más ostrácodos silicificados se encontraron junto con Orbiculoidea (colección EV). Se encontró también un material que parece fragmentos muy pequeños de madera petrificada con Orbiculoidea; este material según Larson (1960), no es de origen vegetal.

No se encontraron fósiles encima de las capas que contienen Styliolina.

Miembro superior.—Los fósiles característicos del miembro superior de la Unidad 3 son los braquiópodos Chonetes, Spirifer en las facies limosas, y

prodúctidos en las facies de la caliza color gris obscuro.

De la SM 1 y de afloramientos cercanos, se identificaron los siguientes braquiópodos: Buxtonia, Crurithyris, Linoproductus, Punctospirifer (probablemente una nueva especie) y un schuchertellido. La especie Chonetes también

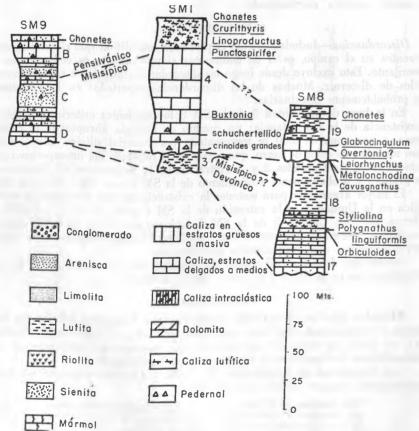


FIGURA 11.-Correlación de las secciones medidas en la Unidad 3.

está presente. Existen muchos fragmentos grandes de crinoides en la base del estrato 4 de la SM 1. A 1.5 km al suroeste de la SM 1, se colectaron dos cálices de crinoides pobremente conservados (de 75.0 a 100.0 mm de diámetro) así como un conulárido. Palmatolepis y Polygnathus se encontraron entre muchos fragmentos de conodontos. Estos conodontos son probablemente retrabajados.

De la SM 8 y afloramientos cercanos Cooper identificó los siguientes braquiópodos: Chonetes. Leiorhynchus, y un prodúctido parecido a Overtonia (espécimen EX 8-19-12). Yochelson identificó el gasterópodo Glabrocingulum. Ellison identificó los siguientes conodontos: Cavusgnathus, Hindeodella, Metalonchodina, Neoprioniodus, Prioniodus y Spathognathodus.

Hav unos cuantos Chonetes en la SM 9 y cerca de ella, no se atacaron

muestras de la SM 9 para buscar conodontos.

Miembro inferior.—La edad del miembro inferior de la Unidad 3 no está bien establecida, Parte de ella puede ser del Devónico Medio tardío, otra parte puede ser del Misisípico Temprano, o en conjunto puede pertenecer a los principios del Devónico Tardío.

Ellison estableció (1961) que la combinación de Icriodus latericrescens y Polygnathus linguitormis indica una edad de los principios del Devónico Tardío. Cooper (1961) sugirió que aunque los fragmentos con Orbiculoidea no perte-

nezcan al conjunto, la edad correcta parece ser devónica.

Miembro superior.-La edad del miembro superior de la Unidad 3 parece ser del Misisípico Tardío (Chesteriano) al Pensilvánico Temprano (Derryano). Cooper (1960) consideró la edad de los braquiópodos del estrato 4 de la SM 1 como del Misisípico al Pensilvánico Temprano y la edad de los braquiópodos del estrato 5 de la SM 1 como del Pensilvánico. Yochelson (1960) consideró la edad del gasterópodo Glabrocingulum, como del Misisípico Tardío-Pensilvánico. Cooper (1961) dijo sobre los braquiópodos Leiorhynchus de 8-19-0 v Chonetes de 8-19-40:

> "Los especímenes sugieren una edad del Devónico Medio, pero pueden ser del Misisípico; este es un género difícil de colocar correctamente. Chonetes sugiere una edad del Misisípico, y en cualquier caso del post-Devónico".

Para el espécimen EX 8-19-12 (Overtonia), Cooper (1961) sugirió una

edad misisípica.

Ellison (1961) consideró los conodontos de 8-19-0 y los ostrácodos de 8-19-20 y 8-19-45 como del Chesteriano. El límite entre el Misisípico y el Pensilvánico es tan difícil de colocar como lo es el límite entre el Silúrico y el Devónico. Se estableció arbitrariamente en la parte superior del estrato 4 de la SM 1.

El autor supone que hubo depósito continuo durante el Pensilvánico Temprano. De ser así, el espesor completo del Pensilvánico pre-Desmoinesiano debe de ser menor de 60 m en la SM 1 y menor de 20 m en la SM 8. Estas cifras son el espesor estratigráfico, entre las capas más inferiores de la Unidad 4 que contienen fusulinidos y las capas misisípicas.

Capas faltantes.-El hiatus mínimo encontrado en los tres afloramientos

precarboníferos, entre la Unidad 2 y la Unidad 3, está en la SM 8. Las dos terceras partes del Devónico Medio, si no es que todo, parecen estar representadas por este hiatus.

El hiatus mínimo entre los miembros inferior y superior de la Unidad 3, está también en la SM 8. La mayor parte del Misisípico, exceptuando parte del Chesteriano, parece estar representada por este hiatus.

El hiatus de la SM 9 parece extenderse desde el Devónico Medio temprano al Misisípico Tardío (Chesteriano).

CORRELACIONES

Miembro inferior.—La Lámina 1 muestra el miembro inferior de la Unidad 3 como un equivalente de "Woodford". Esto puede tener diferentes interpretaciones.

Ellison (1961) sugirió que las capas que contienen *Icriodus latericrescens* (Branson y Mehl) y *Polygnathus linguiformis* (Hinde) deben ser correlacionables con la parte superior de la Formación Canutillo. Estos conodontos (ER) fueron colectados encima de las capas con pedernal manchadas de fierro, en la probable discordancia que se encuentra en la base del miembro inferior de la Unidad 3, en 5.75′ N - 17.8′ W. La muestra ER fue colectada del mismo intervalo que la muestra 8-17-40.

Styliolina se encuentra estratigráficamente más alta aproximadamente 4 m; también está presente en la Formación Canutillo (Wilson, 1960). El pedernal negro del estrato 18 de la SM 8 y el de la Formación Canutillo, parecen ser exactamente iguales.

Estas capas probablemente son equivalentes a la parte superior de la Novaculita Caballos.

Miembro Superior.—Las capas basales del miembro superior parecen ser correlacionables con las capas del Chesteriano.

UNIDAD 4

DEFINICIÓN

Como la Unidad 4 es caliza masiva (micrita), su espesor es difícil de medir. La base de la Unidad 4 se liga gradualmente con la caliza lutítica de la Unidad 3, mientras que en la mayor parte de las localidades en el contacto superior con la Unidad 5 hay un cambio abrupto a limolita o roca arrecifal. En algunos lugares, la Unidad 5 descansa con discordancia angular sobre la Unidad 4.

ESPESOR Y DESCRIPCIÓN

El espesor medido de la Unidad 4 en la SM 8, es de 255 m. No existe una sección completa, cerca de la SM 2, que pueda ser medida con exactitud; probablemente el espesor original exceda los 255 m. Newell et al. (1956) midieron una sección en un área de 360 m adyacente a la SM 9. Esa sección

probablemente, desde la "Capa 7" hasta la "Capa 37" inclusive, es equivalente a la Unidad 4.

La Unidad 4 es caliza masiva que varía a caliza de estratos gruesos, con un poco de pedernal nodular en la mitad inferior. En donde se presenta la estratificación ésta está poco desarrollada. El color de la unidad varía de gris obscuro (N4) en la base, a gris claro mediano (N6) y gris claro (N7) hacia la cima. En Cerro Nevado cerca de la SM 9 los 7 m superiores (véase SM 5 para localización) son una coquina crinoidal o calcarenita. Dos capas de lutita delgada, dura y de color verde claro se encuentran en SM 1.

En el lado oriental del área de Plomosas, de 3.9' N·13.5' W a 1.9' N·13.8' W, la Unidad 4 no es típica. La caliza está mucho más recristalizada (marmolizada) que en cualquier otro lugar, y tiene estratos de espesor mediano. Esta falsa estratificación se discute bajo foliación (p.98). Al sur del Río Conchos, en sitios adyacentes a los afloramientos de la Grava Conchos, la Unidad 4 tiene pedernal en la cima. No se encontró pedernal en ningún otro lugar de la cima de la Unidad 4.

La Unidad 4 es dominantemente microespato con aproximadamente 15% de calcita espática recristalizada. En muchos lugares los fragmentos de crinoides abundan. Láminas de algas (*Ivanovia*?) y fusulínidos abundan en algunos intervalos. Antes de la recristalización la mayor parte de la unidad probablemente fue biomicrita. Al igual que en la Unidad 2, el pedernal tiene 5% de rombos de dolomita.

RUMBO DE DEPÓSITO

Si se consideran como válidos los espesores de 255 m medidos en la SM 8 y 360 m en la SM 9, existe un engrosamiento de la unidad hacia el noreste. La parte inferior de la Unidad 4 tiene un rumbo de depósito hacia el noreste; tal vez las aguas más profundas estaban hacia el noroeste.

PALEONTOLOGÍA

Los fósiles característicos de la Unidad 4 son fusulínidos; ocurren a intervalos más o menos regulares, de tal manera que, con excepción de las capas basales, a la unidad se le ha dado una buena asignación de edad. En las rocas de edad desmoinesiana, existe una capa marcadora de 0.60 m a 6 m de espesor, que contiene el coral colonial *Chaetetes* al que no es posible encontrar encima o abajo de esta zona. Las cabezas de los *Chaetetes* alcanzan hasta 1 m de diámetro, pero pocos son mayores de 0.60 m, de la base a la cima. En la región del levantamiento de Llano, Texas (Winston, 1961), existe una zona similar de *Chaetetes* que fue depositada en aguas someras; los *Chaetetes* individuales alcanzan hasta 2 m, de la base a la cima. Láminas de algas (*Ivanovia*?) están presentes y son abundantes localmente a través de la unidad, excepto en los 30 ó 60 m basales. No se encontraron láminas de algas en otras unidades.

Cerca de la cima de la unidad, se encuentra en muchas localidades una coquina crinoidal o calcarenita de unos 7 m de espesor. Existen otras zonas crinoidales delgadas, en esta unidad, así como en las unidades 1 y 2.

Wilde (1960-61) identificó los siguientes fusulínidos de la Unidad 4:

suma 100%; incluyendo los fósiles) Tabla 5.—Unidad 4: Composición en por ciento composición mineral

Fósiles			35 equinodermos	1 braquiópodo	1 no identificado	7 fusulínidos	73 equinodermos	20 fusulinidos	7 algas tabulares	5 fusulinidos
Misceláneo										75 pedernales
Terrígenos y Tamaño	1 limo med.	8 arena m.f. 91 arcilla								
Dolomita										2
Microespato (.00502 mm) Micrita (.001005 mm)			64 microespatos		94 microespatos	7 microespatos	17 micritas	90 microespatos	90 microespatos	3 microespatos
Calcita espática recristalizada			36		9	92		10	10	17
Sección delgada número	1-6-100		1-6-24		1.6-X	19 B		18	17	2

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

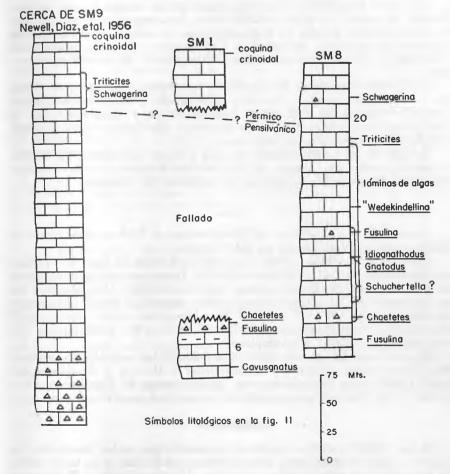


FIGURA 12.—Correlación de las secciones medidas en la Unidad 4.

Desmoinesiano: Fusulina aff. F. euryteines (Thompson), Fusulina cf. F. distenta (Roth y Skinner), Fusulina sp., Fusulinella sp., Wedekindellina cf. W. matura (Thompson), Wedekindellina.

Missouriano: Kansanella (Kansanella) cf. K. osagensis (Newell), Triticites sp., "Wedekindellina" sp., ("W". grupo ultimata).

Virgiliano: Triticites cullomensis (Dunbar y Condra), Triticites sp.

Wolfcampiano: Paraschwagerina? sp., Pseudofusulinella? sp., Pseudoschwagerina cf. P. gerontica (Dunbar y Skinner), Schwagerina sp.,

Triticites cf. T. cellamagnus (Thompson y Bissell), Triticites cf. T. creekensis (Thompson), Triticites sp.

GEOLOGIA DEL AREA DE PLOMOSAS, CHIHUAHUA

Las capas pensilvánicas contienen braquiópodos, aunque no son comunes. Ninguno se observó en capas wolfcampianas. Los braquiópodos más comunes son schuchertellidos grandes, de 75.0 a 100.0 mm de ancho. Cooper identificó los siguientes braquiópodos: Antiquatonia, Cleiothyridina, Hustedia, Schuchertella o Derbyia, y "Spirifer" texanus (Meek). Neospirifer? fue identificado por el

autor.

La Unidad 4 contiene los siguientes conodontos: Cavusgnathus (forma rara), Gnathodus roundyi (Gunnell), Hindeodella, Idiognathodus delicatus (Gunnell), Phragmodus, Prioniodus, Spathognathodus y Stroptognathodus. La edad de todos estos conodontos es desmoinesiana o más antigua, según la asignación de edad inferida con los fusulínidos.

Localmente los corales córneos son más o menos abundantes. Se observaron pocos gasterópodos (ninguno de ellos de forma distintiva); no se observaron briozoarios, ni amonoides, ni esponjas, ni ostrácodos, ni tribolitas.

EDAD

La edad de la Unidad 4 es del Desmoinesiano a Wolfcampiano; capas no

fosilíferas más antiguas pueden ser del Derryano.

De acuerdo con Wilde (1960), los fusulínidos tienen las siguientes edades: muestras 8-20-50, 8-20-61, 8-20-106 y 8-20-188: Desmoinesiano temprano; muestras 1-6-140 y 1-6-150: Desmoinesiano; muestra 8-20-206: Desmoinesiano tardio; muestra 8-20-354: Desmoinesiano tardio; muestra 8-20-422: Misouriano temprano; muestra 131 (2.3' N - 16.3' W): Misouriano medio; muestra 8-20-612: Virgiliano medio; muestra 8-20-725, 27, S, F, y 30: Wolfcampiano temprano; muestra 8-20-761 Wolfcampiano.

Se colectaron del intervalo 8-20-100 a 8-20-325 los braquiópodos Antiquatonia, Cleiothyridina, Hustedia y Schuchertella? o Derbyia, y de acuerdo con Cooper (1961), estos braquiópodos son "probablemente del Pensilvánico (Des-

moines?)"; el "Spirifer" texanus (Meek) indica edad pensilvánica.

CORRELACIÓN

Wilde (1960) estimó, a partir de la distribución de los fusulínidos, los siguientes espesores de las series comprendidas en la Unidad 4, en Cerro Enmedio: Desmoinesiano, 120 m; Misouriano, 55 m; Virgiliano, 24 m; y Wolfcampiano 50 m. En una sección medida en Vinton Canyon en las Montañas Franklin las series tuvieron los siguientes espesores: Morrowano 120 m; Derryano, 110 m; Desmoinesiano, 180 m; Misouriano, 55 m; Virgiliano ausente; y Wolfcampiano delgado. Wilde comentó "...las cifras son curiosamente parecidas a las de las tres unidades pensilvánicas".

La correlación con los afloramientos de la Cuenca de Marathon es más difícil, debido a que la variabilidad litológica y mayor espesor de Marathon está en contraste agudo con la uniformidad y menor espesor de Mina Plomosas y de Vinton Canyon (Montañas Franklin). En general, la Formación Gaptank es correlacionable con la Unidad 4; algunas partes de la Unidad 4 pueden ser un poco más antiguos o más jóvenes. La caliza pensilvánica de la Sierra de Palomas, en el noroeste de Chihuahua, tiene parecido notable con la Unidad 4.

UNIDAD 5

DEFINICIÓN

La Unidad 5 está principalmente compuesta de limolita y conglomerado, también contiene un arrecife y una capa de riolita extrusiva. En la Unidad 5, las relaciones se complican, los cambios de facies laterales son rápidos y se

hace difícil la interpretación estructural.

El contacto basal con la Unidad 4 es abrupto en la mayor parte de las localidades y es discordante en muchas. El contacto superior con los estratos del Jurásico Superior de la Unidad 6, es discordante en la mayor parte de los afloramientos, en 6.8' N - 15.8' W y posiblemente en 59.8' N - 15.7' W no existe discordancia entre las Unidades 5 y 6.

Se cartografiaron cuatro partes de la Unidad 5: Unidad 5 no diferenciada, el arrecife, la riolita extrusiva y la "formación verde". A cada una de estas

partes se dedica en el texto una sección por separado.

ESPESOR

La mayor sección medida de la Unidad 5 está en la SM 8. En esa localidad, la Unidad 5 es de 762 m aunque seguramente ya ha sido erosionada. El espesor combinado de la SM 5 y la SM 4 es 500 m, esto no incluye a mucho de la "formación verde", la cual está demasiado plegada para medirse. No se hizo ningún intento para medir la Unidad 5 en la vecindad de Placer de Guadalupe.

Al suroeste de 6.2' N \cdot 18.3' W los 350 m de limolita estimados presentan gradación vertical hacia arriba con 350 a 700 m de conglomerado. La parte media de esta limolita puede estar cerca del eje de un anticlinal orientado hacia

el noroeste.

Probablemente el espesor máximo de la Unidad 5 se encuentra en la cercanía de Mina Plomosas y Placer de Guadalupe y es de 1050 a 1400 m.

DESCRIPCIÓN

Mucho de la parte no diferenciada en la Unidad 5 es limolita y conglomerado; como puede observarse en la SM 8 hay considerable caliza y un poco de arenisca y lutita. El color es muy variado; los cambios principales de color son más pronunciados lateralmente que verticalmente. En el área de Plomosas, las secciones de 3 a 7 m de espesor, no son de colores alternados, exceptuando las de la SM 5. Hacia Placer de Guadalupe son más comunes las capas de colores alternados.

La limolita es de color morado pálido característico (5P5/2), pero en 3.6' N·14'5 W y en el estrato 2 de la SM 4 gran parte de la roca es de color negro verdoso (5GY2/1). Esta limolita más oscura puede ser característica del lado más profundo del arrecife. La matriz del conglomerado es caliza, generalmente de color gris mediano (N5). Las capas de caliza son por lo general de color gris obscuro mediano (N4) con considerables manchas limoníticas en algunas localidades. No se encuentran capas rojas; con excepción de la facies de la "formación verde", se observaron pocas capas verdes. La limolita se presenta

Tabla 6.—Unidad 5: Composición en por ciento

Sección delgada número	Calcita espática recristalizada (.02 — 2.0 mm)	Microespato (.005 — .02 mm) Micrita Dolomit (.001 — .005 mm)	Terrígeno y ta tamaño	Varios
4-3-283	tr.		69 arena f. 20 arcilla	4 hematita a limonita 3 framgentos de roca volcánica 2 clorita 2 sericita
4-3-70			79 arcilla 15 limo	6 clorita tr. de pirita tr. de mica
4-2-100 4-2-base	1		85 limo 84 limo	15 limonita 15 limonita
5-1-200			72 limo m.	tr. de mica y clorita 3 espículas de pedernal 25 hematita
5-1-70			70 limo f.	20 sericita 10 limonita
5-1-20 5-1-5	5	80	tr. de limo 55 limo 43 arcilla	15 limonita 2 limonita después de pirita
8-30-46 8-29-32 8-29-0	10 10 1	45 microespato 87 microespato 96 microespato	5 limo m. 3 arena m. f.	40 limonita 3 limonita
8-28-20 8-27	2	87 micrita 74 micrita	1 limo 1 arena m. f.	10 fragmentos de roca volcánica? 5 fragmentos de roca volcánica? 20 limonita
8-24-30	10	88 microespato	1 limo	1 limonita

33 45	20 (relleno de veta)	75 microespato 67 micrita	25 l arena m. f. 2 limo 5 arcilla	5 clorita
49	3		93 arena f.	3 sericita 1 hematita tr. de pedernal
61	10	65 microespatc	15 arcilla	10 limonita
63	7		87 arena f.	5 pedernal 1 limonita
65 . 72	20	78 microespato	2 arena m. f. 84 arena m.	10 sericita 5 pedernal 1 leucoxeno
183	25		51 arena m. f.	23 limonita 1 sericita
194	100		tr. de arena f.	

GEOLOGIA DEL AREA DE PLOMOSAS, CHIHUAHUA

dominantemente en estratos delgados, mientras que el conglomerado se halla en estratos gruesos y masivos. La limolita está compuesta principalmente de cuarzo.

Varias partes de esta roca, en sección delgada, se caracterizan por tener poco feldespato, fragmentos de roca volcánica y mucha limonita o hematita. En las secciones delgadas de la SM 5 no se encuentran otras hojuelas de mica que no sean de sericita o de clorita, lo que sí ocurre en las secciones delgadas de la SM 4. La limolita de la SM 5 se caracteirza por tener bolas concrecionarias, de 25.0 a 50.0 mm de diámetro, las que también se encuentran en la parte inferior de la Unidad 5 de la SM 8; estas concreciones están ausentes en la SM 4. La SD 5-1-200 tiene 3% de espículas de pedernal que pueden ser espículas de esponjas del arrecife. Según la clasificación de Folk (1954, p. 344) la limolita es una ortocuarcita no madura.

El conglomerado es de composición muy variable. En algunas localidades está compuesto de más de 80% de fragmentos de riolita, derivados de la riolita extrusiva de la Unidad 5. En otras localidades, está predominantemente compuesto de matatenas y cantos rodados. El conglomerado contiene matatenas de cuarcita y cantos de pedernal rojo y negro. Estos cantos de pedernal y particularmente las matatenas de cuarcita, son más abundantes al noreste del área, 1600 m al oeste de 7′ N - 18.2′ W en 5.85′ N - 16.05′ W, en 5.3′ - N 15.7′ W, y en 4.5′ N - 15.8′ W. La mayoría de los fragmentos del conglomerado son matatenas de 7.5 y 10 cm de diámetro y algunos cantos grandes que nunca exceden de 0.60 cm de diámetro. La mayoría de los clásticos son subredondeados.

Mucha de la caliza que subyace a la riolita de la SM 8, muestra evidencia de una actividad volcánica contemporánea (Tabla 6). La SD 8-27 contiene 5% de fragmentos de roca volcánica no resistente, 20% de limolita, y algunos granos de cuarzo; por lo que se infiere que la actividad volcánica principió casi simultáneamente al depósito del estrato 27, de la SM 8. Gran parte de la caliza es dismicrita, que pudo haber sido formada por organismos perforantes. El estrato 29 de la SM 8, tiene una caliza con pedernal. El material reemplazado por el pedernal en algunas localidades parece orgánico, aunque esto no ha sido definitivamente probado.

Las secciones delgadas de la arenisca de la Unidad 5 se clasifican como sigue:

- SD 63 Arena fina: subarcosa calcítica submadura con pedernal.
- SD 49 Arena fina: ortocuarcita no madura a ortocuarcita silícico sericítica, submadura.
- SD 72 Arena media: ortocuarcita sericítica no madura, con pedernal
- SD 183 Arena muy fina: ortocuarcita no madura, limolítica y altamente calcítica.
- SD 4-3-283 Arena fina: ortocuarcita no madura, sericítica y volcanítica.
- *SD 12 Limo grueso: ortocuarcita clorítica, submadura.
- *SD 40 Arena fina: ortocuarcita submadura, silícico sericítica, con feldespato.

*SD 301 Arena fina: ortocuarcita submadura, altamente calcítica y volcanítica.

51

*de la "formación verde".

La arenisca del estrato 34 en la SM 8 es más o menos limpia y uniforme. Bridges y DeFord (1961, p. 102) llamaron a ésta, arenisca blanca, pero en realidad es de color gris rosado (SYR8/1) y gris muy claro (N8). La SD 63 se colectó del estrato 34. El feldespato y algo del cuarzo, probablemente se derivan de la riolita de la Unidad 5. El pedernal es probablemente retrabajado de la caliza paleozoica.

La SD 49 se colectó en 5.85' N - 16.05' W; la SD 72 se colectó en 6.3' N - 17.1' W. Ambas secciones delgadas pertenecen a zonas arenosas dentro del conglomerado. La SD 183 fue colectada en el camino del arroyo, de la base del conglomerado que suprayace a la "formación verde". El alto porcentaje de limonita puede ser el resultado de una actividad volcánica contemporánea.

FUENTE DE ORIGEN Y DIRECCIÓN DEL CONGLOMERADO

La mayor parte del material del conglomerado de la Unidad 5, se derivó de rocas similares a las rocas paleozoicas expuestas. Existe sin embargo, un poco de pedernal rojo y negro y considerable cuarcita que no corresponde con ningún afloramiento de roca más antigua. El área de Van Horn, Texas, es una fuente cercana que expone rocas precámbricas similares.

En el conglomerado de la Unidad 5 no se encuentra pedernal verde o blanco como el de los afloramientos de roca prepensilvánica de la Cuenca del Marathon. De ahí que la fuente de origen probablemente no sea el Levantamiento de Marathon o la facies Marathon.

Existen pocos rasgos direccionales en el conglomerado. No se observó diastraficación. Se observó en tres lugares la imbricación de los cantos del conglomerado; en 1.2′ N - 16.05′ W, en la margen occidental del Río Conchos, la dirección de la fuente de origen es sur, en esta localidad la roca está probablemente invertida, de tal manera que la dirección original sería norte. En 3.2′ N - 16.45′ W, cerca de la SM 6, la dirección original parece haber sido N50°E. Al oriente de Placer de Guadalupe, cerca del camino de Picachos, la dirección original dudosamente es hacia el norte. Basándose en estas pocas mediciones, la dirección de la fuente de origen sugerida, es de norte a noreste. También indican una dirección original de norte a noreste las diastratificaciones en pequeña escala del estrato 34 de la SM 8.

ARRECIF'E

Definición.—El complejo arrecifal probablemente se desarrolló en aguas poco profundas, más o menos de la misma profundidad que las que rodeaban al litotopo limolítico, por lo que no existe un talud arrecifal. Gran parte de la roca cartografiada como arrecife no es fosilífera, no es claramente una roca arrecifal; de cualquier manera, la roca no fosilífera es lateralmente gradacional con la roca fosilífera y también lo es verticalmente aunque con poca extensión.

El arrecife tiene cuatro facies gradacionales distintivas: una facies de núcleo arrecifal, una facies de tubiphyte, una facies de fusulínidos calcoesféricos y una facies de arrecife marginal (Figura 13). Existe discordancia angular abajo y encima de la porción expuesta del complejo arrecifal.

Espesor y descripción.—La única sección medida en el arrecif ees la SM 5; el espesor del arrecife es de 100 m. No fue posible medir el espesor máximo que probablemente alcanza de 175 a 350 m cerca del centro del arrecife, ya que éste es masivo y su base no está expuesta. En varios lugares el complejo

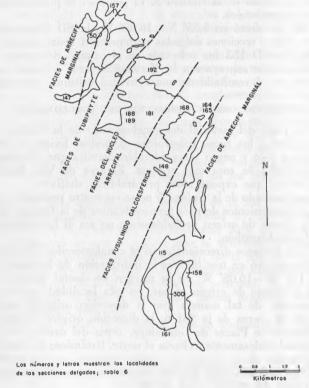


FIGURA 13.-Facies gradacionales del arrecife.

arrecifal se adelgaza completamente; el arrecife no está presente en Cerro Enmedio y no aflora cerca de Placer de Guadalupe. El área total de afloramiento del arrecife está probablemente incluida en la Lámina 1.

Litológicamente el arrecife es caliza algal dolomitizada. Existe mucha recristalización; la cantidad relativa de dolomita de grano fino que parece micrita y microespato en sección delgada, y la cantidad de calcita espática, son variables en todas las facies (Tabla 7).

	Porosidad (por ciento)	n 0	0	63	4		0	0	0
delgadas)	Fósiles	1 equinodermo 2 equinodermo principalmente recristalizado	l calcoesférico tr. de alga dasicladácea	tr. de equinodermo tr. de foraminífero 1 ostrácodo	1 pelecípodo	tr. de alga dasicladácea	5 alga incrustada 5 gasterópodo 2 ostrácodo	l foraminitero	5 calcoesférico 1 ostrácodo
(Se desconoce la localidad de algunas secciones delgadas)	Varios	40 pisolitas manchas de hematita		2 vetas de	cuarzo	tr. de yeso	5 anhidrita o baritina	manchas de	
localidad de a	Terrígeno y tamaño	tr. de limo						tr. de limo	
desconoce la	Dolomita	80	80	00	00	65	20	35	55
(Se	Calcita (principalmente espato	20	20		18	35	25	65	45
	Sección delgada	Y 50	70		71	74	115	147	148

H	0	0	0	0		H.	-	-		4	0	r.	0		
10 Tubiphytes	15 calcoesférico tr. de gasterópodo	ir, de loraminitero	15 calcoesférico	3 alga dasicladácea2 ostrácodo	l alga dasicladácea l pelecípodo	15 alga dasicladácea	Tubiphytes	tr. de ostrácodo	tr. de pelecípodo	completamente	recristalizados esponja	tr. de equinodermo tr. de gasterópodo	tr. de pelecípodo		
1			T			Ť	20	2	Í				9 6		
1 clorita	manchas herrumbosas	1 mica				I clorita		tr. de	hematita		10 pedernal?	15 pedernal?	50 machacadas e	(nisolitae?)	tr. de mica
7		_			,	-					10	15	20		
		5 limo				1 arena	1 limo						tr. de limo		
62	82	76	08	20	8	69	80	20	G	200	75	9	08		
20	15		20	30	c		19	30	G	70	15	20	50		
157	158	191	104	165	168	700	179	181	100	100	189	192	200		

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

La historia de la recristalización es compleja. Son comunes los crecimientos en los rombos de dolomita (SD 188). En algunas secciones delgadas (SD 181) la extinción de la calcita espática y la dolomita es radial. En la SD 168 el

megacuarzo está principalmente reemplazado por calcita.

La SD 148 es representativa de una litología especial; contiene abundantes cristalitos de calcita cristalina regularmente espaciados, transparentes y embebidos en una matriz obscura y uniforme. Folk (1961b) considera esta roca como un ejemplo excelente de dismicrita. La roca se encuentra únicamente cerca de la cima y en los extremos del arrecife. Probablemente se formó en aguas tan someras que el área puede haber estado expuesta a la intemperie durante las mareas bajas. Los cristalitos de calcita cristalina parecen rellenar cavidades secundarias en la caliza. Las cavidades son regulares y probablemente no fueron hechas por organismos.

Rezak (1962) identificó calcoesferas en muchas secciones delgadas. Otras rocas peletoidales parecen ser el resultado del reemplazamiento de la mayor parte de la roca quedando inalterados pequeños globitos subcirculares de micrita.

Anhidrita o barita y veso en pequeñas cantidades se encontraron en la SD

Lateralmente el color del complejo arrecifal varía en cortas distancias, del negro grisáceo (N2) al gris mediano (N5). Otras partes del complejo arrecifal, se caracterizan por los colores gris oliva claro (5Y5/2), gris oliva (5Y4/1), café amarillento pálido (10YR6/2), y amarillo polvoso (5Y6/4). La falta de orden en la distribución del color puede indicar que prevaleció un microambiente de depósito que fue variable y somero.

Aunque la mayor parte del complejo arrecifal es masivo, cerca de los ex-

tremos tiene estratos de espesor mediano.

Facies.-La facies de núcleo arrecifal está caracterizada por megafósiles esporádicos y por 2% a 5% de porosidad. Las otras facies no tienen porosidad ni megafósiles, excepto algunos gasterópodos raros y fragmentos de crinoides.

La zona de algas no perturbadas es de varios centímetros de longitud, se encuentra en bandas ondulantes, subparalelas y delgadas (.01 - .03 mm). Newell

(1955, p. 307) las describe como estromatolitos que:

... "consisten de incrustaciones laminares delgadas en los cantos o esqueletos fósiles. Generalmente son de unos cuantos milímetros de espesor y de forma muy irregular. Son relativamente opacos en sección delgada, y se componen de láminas más o menos irregulares, delgadas, de color claro, que alternan con láminas más gruesas y obscuras, cada par de las cuales promedia 1/25 mm de espesor."

La zona algal en la SD 181 es similar a la que Newell (1955, lám. 8) señala como ejemplo de crecimiento estromatolítico. Rezak (1962) considera el alga de la SD 181 como Coactilum y restringe los estromatolitos a creci-

mientos algales más grandes, de varios centímetros de diámetro.

La facies marginal del arrecife está compuesta de dolomita con intraclásticos esporádicos. Los únicos fósiles encontrados en la SD 158 de esta facies fueron calcoesferas, provenientes de 1.1' N - 14.1' W. Probablemente esta parte del complejo arrecifal fue construido por crecimientos algales en condiciones de suficiente turbulencia de tal manera que presentan crecimientos indescriptibles; las algas no son reconocibles y la dolomita seguramente no es orgánica.

57

La facies de Tubiphytes contiene pisolites en algunas localidades. Se supone generalmente que los pisolites indican crecimientos del arrecife posterior; posiblemente los Tubiphytes prefirieron estas condiciones. Toomey (1962) y Rezak (1962) comentan que los Tubiphytes en este arrecife son excepcionalmente numerosos. En esta facies también se encuentran algunas algas dasicladaceas.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

En la facies de calcoesferas de fusulínidos, los fósiles y las rocas son intermedias entre aquellos del núcleo del arrecife y los del margen del arrecife. Los fusulínidos de esta facies se restringen a un área pequeña cercana a 3.2' N -14.8' W. Las calocesferas están presentes en toda esta facies y también pueden estar presentes en la facies de Tubiphytes. Las algas dasicladaceas son prominentes cerca de 4' N - 14.1' W. Existe un crecimiento estromatolítico grande en 3.9' N - 13.8' W; ahí se encontraron tres estromatolítos de 5 cm de diámetro. Los gasterópodos son también característicos de esta facies.

Desde luego, la potente facies del núcleo arrecifal es gradacional con la facies marginal. Algunos crecimientos locales obscurecen el cambio regular en espesor. No todos los crecimientos están en el mismo nivel estratigráfico.

Orientación del arrecife.—Como se muestra en la Figura 13, el complejo arrecifal tiene una orientación general nor noreste. El arrecife frontal, el cual no está típicamente desarrollado debido a que el agua fue somera en todos lados, parece estar en el flanco este-sureste del complejo arrecifal. Esto se infiere debido a la presencia de pisolites en la facies de Tubiphytes. Más aún, la roca del extremo suroriental del complejo arrecifal de donde se colectó la SD 161 parece más bien un talud arrecifal.

Una interpretación complicada basada en los fusulínidos, sugiere que el arrecife puede haber sufrido una regresión hacia el sureste. Wilde (1960) asignó edad del Wolfcampiano tardío o Leonardiano temprano a los fusulínidos (muestra FG) de la cima del arrecife en 3.2' N - 14.6' W, cerca de donde se colectó la SD 148.

También asignó edad del Wolfcampiano a los fusulínidos (muestra FK) de la parte más superior de la Unidad 4 en 0.9' N - 15.1' W y consideró la muestra FK como un poco más antigua que la muestra FG. La muestra FJ y la muestra FK viene de la misma localidad aunque la muestra FJ es 10 m estratigráficamente más alta; se encontró en un lente conglomerático de 3 m de espesor bajo el arrecife. Este lente conglomerático es parte de la Unidad 5 no diferenciada, es muy delgado y local, por lo que no aparece en el mapa. Wilde le asignó edad Leonardiana?, y consideró que contiene los fusulínidos más jóvenes colectados en el área. La base del arrecife de la otra margen del Río Conchos en 0.9' N - 15.1' W parece ser más joven que la cima del arrecife en 3.2' N - 14.6' W, en esta zona puede haber fallamiento o una inversión de las capas. Probablemente este es un problema de facies diferentes, como se puede esperar en la Unidad 5.

Existen varias otras explicaciones; es posible, aunque no probable, que los fusulínidos de la muestra FJ puedan haber vivido al mismo tiempo o un poco antes que los fusulínidos de la muestra FG. Aunque estos fusulínidos hayan venido de facies diferentes, están geográficamente cercanos unos de otros por lo que parece poco razonable discutir la asignación de edad sugerida por Wilde.

El hecho de que la parte más joven del arrecife está en el frente del complejo sugiere que el arrecife puede haber sufrido una regresión hacia el sureste. Esta interpretación es congruente con la naturaleza regresiva de los arrecifes pérmicos que rodean a la Cuenca de Delaware.

Extensión en el subsuelo.-Probablemente el complejo arrecifal no se extienda a mucha distancia al sur del afloramiento actual, pero sí se extiende cuando menos 1.5 km o 32 km hacia el nor-noreste. También es posible que una serie de complejos arrecifales similares estén presentes como pequeños manchones, con la misma orientación, hacia el noreste.

RIOLITA EXTRUSIVA

Espesor y descripción.—La riolita extrusiva está estratigráficamente varias decenas de metros más alta en la Unidad 5, que la parte occidental del complejo arrecifal. No es un diquestrato terciario debido a que gran parte del conglomerado de la Unidad 5 está compuesto de cantos de riolita retrabajada de

En la SM 8 la riolita tiene 29 m de espesor. En el área de afloramiento, tiene un espesor considerable, excepto en 4'N - 16' W donde se adelgaza.

El pórfido riolítico tiene una composición uniforme. La matriz es un agregado microcristalino de cuarzo y feldespato alcalino; localmente es microesferulítico. Se observó solamente en una muestra de riolita (SD 46, Tabla 11) con estructura de flujo en un fragmento de conglomerado. Los fenocristales, de cuarzo v feldespato alterado comprenden 25% de la roca. Los fenocristales de cuarzo son subeuhedrales a euhedrales y muchos están carcomidos. Debido a la alteración avanzada de la sericita y la clorita, es difícil distinguir los feldespatos potásicos y la plagioclasa; probablemente el 30% de los fenocristales de feldespato sean de plagioclasa. Localmente los cristales de feldespato potásico muestran gemelación Carlsbad.

La roca fresca es gris obscuro mediano (N4) con fenocristales de feldespato gris rosado (5Y8/1); la roca alterada es gris muy clara y moteada con óxidos de fierro. Solamente los fenocristales de cuarzo vítreo son fácilmente visibles en las superficies intemperizadas.

Fuente de origen y extensión.—Ambos extremos del afloramiento de riolita de Cerro Enmedio están disectados por la erosión o el fallamiento. El extremo noroccidental del segundo afloramiento está quebrado y cortado por una falla inversa principal. En el extremo suroriental el segundo afloramiento se adelgaza.

El adelgazamiento de la zona oriental no prueba el que exista una fuente de origen derivada del occidente. También puede deberse al flujo, particularmente si el alto en el que se desarrolló el arrecife fue persistente.

Existe un pequeño afloramiento de basalto vesicular, en el extremo noroccidental del segundo afloramiento unos 10 m estratigráficamente más abajo de la riolita. En el centro y al oriente del Potrero, existe un pequeño afloramiento de riolita que suprayace a un poco de basalto vesicular. No se conocen otros afloramientos. En Cerro Enmedio, no aflora basalto vesicular, y en el conglomerado cercano a Placer de Guadalupe sólo un pequeño porcentaje del material igneo es basalto vesicular. La extensión del basalto probablemente fue muy local, y su fuente de origen fue lo que ahora es el Potrero.

Una estimación aproximada de la extensión original de la riolita es de 80 km² como mínimo, pues 50% del conglomerado de la Unidad 5 está compuesto de fragmentos derivados del cuerpo extrusivo original.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

"FORMACIÓN VERDE"

Definición.—La "formación verde" es de color predominantemente verde claro. El nombre informal de "formación verde" se ha usado en Mina Plomosas por algún tiempo.

En la mayoría de los afloramientos, el contacto basal es una falla de cabalgadura. Esta falla de cabalgadura existe a lo largo de casi todo el flanco nororiental de la cadena montañosa entre Mina Plomosas y Placer de Guadalupe y en el lado oriental de Cerro Enmedio y La Sofía. Inmediatamente al sur del núcleo del arrecife, se encuentra limolita morada que es gradacional hacia arriba y limolita verde y a lutita de la "formación verde". Ahí la base está en un intervalo gradacional de 10 m o más.

En 6.8' N - 15.7' W la "formación verde" está cubierta discordantemente por los estratos jurásicos de la Unidad 6. En algunos lugares, por ejemplo 1.7' N - 15.5' W, la "formación verde" es gradacional a limolita morada. Al noreste de Placer de Guadalupe, por el camino del arroyo, un conglomerado descansa sobre la "formación verde". Otros autores han considerado este conglomerado como mesozoico y han colocado una discordancia entre el conglomerado y la "formación verde". Probablemente la "formación verde" es gradacional al conglomerado; la discordancia se encuentra en la cima del conglomerado.

Espesor y descripción.—Es difícil medir el espesor verdadero de la "formación verde" en el área de Plomosas, debido a que está muy deformada por el fallamiento. Una sección podría medirse al noroeste de Placer de Guadalupe. Probablemente el espesor se encuentre entre los 350 y 700 m.

La mayoría de las secciones delgadas de la "formación verde" son lutitas limosas. Mucho de la "formación verde" es lutita y posiblemente predomine esta litología aunque la SM 4 es limolita. Existe una cantidad menor de interestratos de yeso en la "formación verde" en 6.8' N - 15.5' W; no se observó yeso en ningún otro lugar.

La roca típicamente es gris verdoso (5G6/1), aún en superficies intemperizadas. Parte de ella es gris amarillento intemperizado (5Y7/2). Un promedio de 2-3% de clorita dá a la roca su color verdoso. Raramente la roca contiene más del 20% de clorita; es entonces gris verdoso obscuro (5G4/1). La distribución uniforme de la clorita en las secciones delgadas examinadas, indica un desarrollo in situ durante el depósito o una diagénesis. Un poco de clorita está concentrada en venas.

La "formación verde" está tan plegada en la mayoría de los afloramientos que no se puede reconocer la estratificación. En algunos lugares es brechoide. En donde la estratificación es reconocible, la "formación verde" se presenta en estratos medianos a delgados.

La SD 40, colectada en 6.3' N - 15.1' W, contiene el único material clástico de tamaño mayor que limo observado en la "formación verde" dentro del área de Plomosas. La sección delgada contiene aproximadamente 94% de cuarzo,

ABLA 8.—"Formación verde": Composición en por ciento.

Sección delgada número	Calcita espática recristalizada (.02 - 2.0 mm)	Microespato (,00502 mm) Micrita (,001005 mm)	Dolomita	Terrigeno y tamaño	Varios
4	70 (relleno de junta)			l limo 2 arcilla	25 vetas de cuarzo 2 clorita tr. de hematita
ro	1			6 limo 60 arcilla	30 vetas de cuarzo 3 clorita
6				8 limo	2 clorita
11				30 limo	tr. de clorita
12				79 limo	20 clorita 1 limonita
40				98 arena f.	l pedernal
62				3 limo 90 arcilla	5 clorita 2 limonita después de pirita
301	25			70 arena f.	4 fragmento de roca volcánica 1 clorita

3% de feldespato no diferenciado (probablemente ortoclasa), 1% de plagioclasa, 1% de pedernal, 1% de arcilla alterada a sericita, trazas de clorita, y 2 granos de turmalina. Ninguno de los granos de cuarzo es claramente de origen volcánico; probablemente el feldespato es material retrabajado de la riolita extrusiva. El pedernal fue probablemente derivado de la caliza paleozoica.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

La SD 301 se colectó en un pequeño afloramiento (7.15' N - 16.5' W) rodeado por aluvión cuaternario. La roca es arenisca pobremente cementada, que puede ser parte de la "formación verde". Contiene 2% de ortoclasa (par-

cialmente sericitizada) y trazas de plagioclasa y microclina.

No se identificaron granos de feldespatos en la limolita o la lutita limosa. Las hojuelas de mica (que no sean de clorita) son escasas aún en la lutita. Localmente se encuentran cristales de pirita.

Los cristales de calcita de la SD 4, que fue colectada de un material que rellenaba algunas fracturas, tienen láminas gemelas dobladas, generalmente si-

milares a los cristales de calcita del mármol de la Unidad 6.

Posición estratigráfica.—Es fácil deducir que la "formación verde" es más joven que las capas con mármol de la Unidad 6 pues parece que la suprayacen. Más aún, descansa sobre la Unidad 6 en el flanco oriental de Cerro Enmedio y en La Sofía. La "formación verde" no está repetida en ninguna de estas lo-

calidades, lo que sugiere un fallamiento inverso o cobijamiento.

Bajo la "formación verde" de Mina Plomosas, en la SM 7, y de la parte superior de la SM 10, se colectaron las mismas especies de amonitas. La "formación verde" tiene un afloramiento continuo desde Mina Plomosas a Placer de Guadalupe (Lámina 3). Las mismas amonitas ocurren a ambos lados (NE v SW) de este afloramiento. Tal vez la "formación verde" no esté repetida por cabalgamiento, debido a que sería una facie cabalgada sobre una segunda facie de edad similar pero de composición diferente. Cerca de Mina Plomosas, mucha de la roca equivalente en edad a la "formación verde" generalmente más joven que el arrecife, probablemente se erosionó con anterioridad al depósito de la Unidad 6. La "formación verde" puede ser una facie equivalente a la parte superior de la Unidad 5.

Medio ambiente de depósito.-Probablemente el sedimento de la "formación verde" fue depositado en un área marginal bajo aguas marinas o no marinas. Algunos pozos de prueba, en Texas y Nuevo México, muestran que el cambio lateral de lutita verde clara a lutita negra, en rocas pérmicas, indica generalmente el cambio de los depósitos del arrecife frontal a los depósitos del arrecife posterior. Los depósitos de la "formación verde", de gran espesor y ampliamente esparcidos, son una base para pensar en la existencia de arrecifes mayores en el subsuelo de Chihuahua, dentro de la Unidad 5. Si se encuentran presentes los arrecifes en la región de Chihuahua central probablemente estén al este o

sureste de Mina Plomosas.

Las capas de arenisca verde claro, de más o menos el mismo tono que la "formación verde", se encuentran interestratificadas con evaporitas pérmicas que afloran en la parte norte-central de Texas. Este parecido y la presencia de veso interestratificado de la "formación verde" hace pensar en el depósito en aguas someras tras una barrera litoral.

En la SD 40 los granos de plagioclasa están más frescos que los granos de ortoclasa como, según Folk (1961a, p. 81-82), es de esperarse. No existe una diferencia substancial en el intemperismo de las mismas especies minerales. Los granos de feldespatos están redondeados y algunos granos de cuarzo son subangulares, ambos son de tamaño similar. De acuerdo con Folk (1961a, p. 81-82) esto indica un clima templado. Del estudio de la DE 63 del estrato 34 de la SM 8, se llegó a una conclusión similar respecto al clima.

PALEONTOLOGÍA

Fósiles extraños al arrecife.—La Unidad 5 no es fosilífera, excepto en el

arrecife v zonas advacentes.

Los únicos fusulínidos de la limolita que subyace al arrecife se encontraron en la muestra AB colectada en 6.1' N - 15.75' W; éstos son Triticites sp. pobremente conservados y Schwagerina? sp. La muestra FJ se colectó en 0.9' N · 15.1' W en un lente conglomerático delgado justamente abajo del arrecife. Esta muestra contiene Parafusulina? sp. (género nuevo) y Schwagerina?

sp. (género nuevo).

La muestra AE se colectó en 3.2' N - 14.6' W a 0.30 m de altura encima del arrecife. Contiene Schwagerina sp. pobremente conservada y Triticites? sp. La muestra DN se colectó de unos cantos rodados en 4.5' N - 17.05' W. Esta localidad está más allá del arrecife; de cualquier manera, esta muestra viene de una roca estratigráficamente equivalente al arrecife. Wilde identificó Pseudoschwagerina cf. P. gerontica (Dunbar y Skinner) y Schwagerina sp. de la muestra DN. La muestra CA fue colectada de la caliza marmolizada, a unos 30 a 60 m encima del arrecife, en el sendero que va a Cerro Enmedio o sea en 4.35' N · 17.05' W. La muestra CA contiene fusulínidos alterados imposibles de reconocer específicamente (Schwagerina?).

Se colectó de la limolita de la SM 5 un espécimen de Helicoprion que tiene una hilera de dientes agudos. El área de Plomosas es la segunda localidad en México en donde se ha encontrado Helicoprion (Bridges y DeFord, 1961, p. 102). Unos pocos corales córneos ocurren en la limolita, bajo el arrecife.

El estrato 22 de la SM 8 en Cerro Enmedio se encuentra a 87 m encima de la Unidad 4. Este estrato puede correlacionarse con las capas que subyacen al arrecife, ya que el estrato 24 de la SM 8 puede ser correlacionado con el arrecife. El estrato 22 contiene unos pocos corales córneos, unos cuantos fragmentos de crinoides, y pocos amonoides pobremente conservados así como algunos gasterópodos. Los cuatro gasterópodos del estrato 22 en 3.4' N - 16.3' W son Babylonites parecidos a B. acutus (Yochelson), Discotropis y el molde externo de un Baylea gigantesco.

Unos cuantos amonoides pobremente conservados están presentes en la parte inferior de la Unidad 5 en la sierra que se eleva entre Mina Plomosas y Placer

de Guadalupe.

En 4.2' N - 16.7' W se encuentra una capa de caliza 30 ó 60 m estratigráficamente encima del arrecife; es parecida a la caliza de la Unidad 2 y en ella se colectaron braquiópodos Leiorhynchoidea cf. L. bisulcata (Shumard) así como una Composita pequeña. De las muestras GH que se atacaron con ácido, se identificaron varios conodontos, entre ellos Gondolella.

La muestra 4-3-400 fue trabajada por Stover (1961), pero no encontró

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

esporas ni polen.

Los fósiles más jóvenes de la Unidad 5 son pequeños caracoles (0.75 cm de diámetro) colectados del estrato 28 de la SM 8 a 340 m encima de la Unidad 4. Yochelson (1960) los describe como "caracoles moderadamente espirales con algunos vertícilos poco inflados y con suturas relativamente profundas", pero no pudo asignarle un nombre genérico o determinar si son marinos o no marinos.

Fósiles del arrecife.— Como la diversidad de formas fósiles raras del arrecife están más allá del alcance de esta disertación, el sumario paleontológico no es completo. Se necesita un estudio más detallado para precisar las conclusiones.

Los fósiles más abundantes del complejo arrecifal probablemente son las algas. El alga dominante es una variedad de alga verde azulosa. En la facies de núcleo arrecifal es *Coactilum* el más abundante. Rezak (1962) también identificó algas dasicladaceas (*Macroporella*) en varias secciones delgadas. La abundancia de algas dasicladaceas indica aguas de 0.30 a 1 m de profundidad; usualmente estas algas crecen alrededor del núcleo del arrecife (Rezak, 1962) pero no lo cubren.

Tubiphytes es un alga o es un hidrozoario. En los ejemplares de mano los individuos son más o menos grandes en tamaño. Se reconocen debido a su color más claro en el ejemplar de mano o debido a su color más obscuro en sección delgada. Tienen forma de varilla y alcanzan 3 mm de diámetro y unos 10 mm de largo. En Cerro Nevado son abundantes.

Wilde (1960) identificó Schwagerina sp., Triticites sp., Chusenella sp., y Schubertella sp. (forma inflada, abundante e intermedia entre S. kingi y S. melonica). Los fusulínidos son escasos en el complejo arrecifal; se encontraron solamente en 3.2' N - 14.6' W. Toomey (1962) identificó el foraminífero Geinitzina, en un espécimen de mano.

Las esponjas son abundantes en la facies del núcleo arrecifal, los géneros pequeños son difíciles de reconocer; los géneros grandes se pueden reconocer fácilmente en el campo. La especie cilindrocónica Heliospongia vokesi (R. H. King) llega a tener un diámetro máximo de 0.15 m y un largo máximo de 0.30 m. Tiene una cloaca grande; Bridges y DeFord (1961, Fig. 2) confundieron los fragmentos de Heliospongia con stromatoporoides. Una especie parecida a una culebra, Actinocoelia sp. cf. A. maeandrina (Finks), tiene un largo máximo de 0.60 mm y un diámetro máximo de 0.08 mm. Se caracteriza por tener canales grandes sin cloaca. Girtyocoelia dunbari (King) y Guadalupia sp. aff. G cylindrica (Girty) también se reconocieron aunque son escasas.

Los braquiópodos parecidos a spirifers, pobremente conservados, se vieron en dos localidades en la facies del núcleo arrecifal; son difíciles de colectar. Una sola *Composita* bien conservada encontrada cerca de la fuente de origen, fue identificada por Cooper en la SD 191. Los braquiópodos son casi iguales en abundancia a los dos géneros de esponjas grandes citadas con anterioridad.

Los gasterópodos de 2.5 a 5 cm de diámetro, pobremente conservados, se encuentran muy distribuidos. Parecen ser los más abundantes en la facies de fusulínidos calcoesféricos.

Los fragmentos de crinoides son más o menos abundantes en la facies del núcleo arrecifal, algunos crinoides se observaron en posición de crecimiento.

Los ostrácodos y briozoarios son escasos y solamente se vieron en sección delgada. No se encontraron corales. Newell et al. (1953. p. 113) y Newell (1955, p. 306) describieron briozoarios muy abundantes en las aguas profundas de la facies del Arrecife Capitán, en Texas. Su observación puede considerarse como una evidencia negativa para insistir en la idea de que el agua fuese somera en el área de Plomosas.

EDAD

A la parte inferior de la Unidad 5 se le ha asignado la edad por los fusulínidos. Wilde (1960) sugiere que Schwagerina y Triticites?, de la muestra AE, indican una edad wolfcampiana. El opina que Pseudoschwagerina cf. P. gerontica (Dunbar y Skinner) y Schwagerina sp. de la muestra DN, indican una edad del Wolfcampiano tardío y que Parafusulina? sp. (género nuevo) y Schwagerina? sp. (género nuevo) de la muestra FJ, indican una edad leonardiana? Wilde no asignó edad a las muestras AB y CA, pero en una sección columnar, en su carta enviada en octubre, coloca tentativamente la muestra AB en el Wolfcampiano? y la muestra CA en el Leonardiano?

Yochelson (1960) estableció que Babylonites acutus (Yochelson) se encuentra en la Formación Word del oeste de Texas y que los especímenes incompletos de Babylonites de Chihuahua se parecen a B. acutus. Establece además, que otro espécimen "...puede ser un euomfalido pero muestra algunos rasgos similares a los Discotropis sp. descritos en la Formación Bell Canyon del oeste de Texas." No sugirió ninguna edad para el espécimen de Baylea (posiblemente género nuevo). Los fusulínidos wolfcampianos de la parte superior de la Unidad 4 son los fósiles paleozoicos a los que en la SM 8 se les ha asignado edad más joven.

Wilde asignó edades, mientras que Yochelson reportó ocurrencias. De ahí que el conflicto en edades entre los fusulínidos y los gasterópodos puede no existir. Para arrojar luz sobre la edad de las capas que afloran al sureste del área de Plomosas, es necesario colectar más fósiles.

El amonoide *Perrinites hilli* (Smith), de la Unidad 5, cerca de Placer de Guadalupe fue colectado e identificado por W. M. Furnish. Furnish consideró su edad como del Leonardiano (Bridges y DeFord, 1961, p. 99).

Cooper (1961) consideró la edad de *Leiorhynchoidea* cf. *bisulcata* (Shumard) y la de una *Composita* pequeña, como pérmica, y Ellison (1961) consideró *Gondolella* como del Pérmico o Triásico.

De acuerdo con Wilde (1960), los fusulínidos del arrecife indican una edad del Wolfcampiano tardío o Leonardiano temprano. Otros fusulínidos (mencionados en la sección sobre orientación del arrecife) sugieren que parte del complejo arrecifal es leonardiano. Los fusulínidos de la limolita situada directamente abajo del arrecife en 7.1' N - 15.8' W indican una edad del Wolfcampiano medio o temprano. La esponja, *Guadalupia*, le sugiere a Finks (1962) una edad del Leonardiano temprano. Probablemente esa parte del complejo arrecifal expuesto, varía del Wolfcampiano medio temprano al Leonardiano temprano.

En la Unidad 5, encima de la riolita, no se encontraron fósiles de edad asignable. La edad de los fósiles más jóvenes colectados bajo la riolita es wolf-

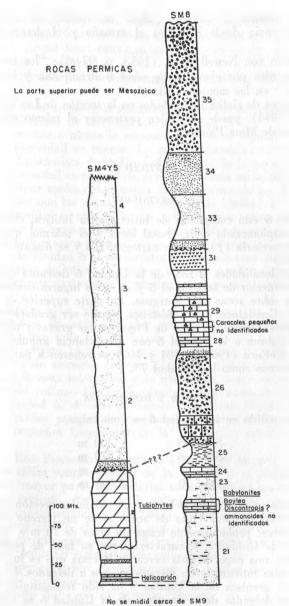
campiana, la edad de otros fósiles cercanos, que pueden estar estratigráficamente bajo la riolita, es leonardiana? La asignación más acertada para la extrusión es probablemente de una edad leonardiana.

No se encontraron fósiles en la "formación verde". Stover (1961) analizó dos muestras de la "formación verde" y una muestra de la SM 4 buscando esporas y polen. Estas tres muestras no tuvieron microfósiles químicamente insolubles: el contenido orgánico fue bajo.

Rix (1961) señala que las muestras frescas de las rocas de color gris a negro probablemente contengan esporas y polen. Las muestras enviadas están intemperizadas parcialmente y son de colores verde, amarillo y morado. Probablemente la "formación verde" no contiene esporas o polen, pero la lutita de color obscuro del conglomerado de la Unidad 5 puede ser que sí los contenga.

El espinazo de la cadena montañosa que se extiende desde el sur de Placer de Guadalupe a Cerro Enmedio, es una banda continua de conglomerado (Lámina 3). No se han encontrado fósiles en este cuerpo de roca. El conglomerado es gradacional hacia abajo a la limolita y a la arenisca de la Unidad 5, así como lo es el conglomerado que yace encima de la "formación verde" al cual lo cruza el camino del arroyo y que probablemente es también gradacional con la "formación verde". Muehlberger (1962) aceptó esta interpretación después de visitar los afloramientos.

Es natural pensar que un conglomerado debe estar en la base de una secuencia y se resiste uno a colocarlo en la cima de la secuencia. Para establecer la edad de estos cuerpos conglomeráticos se necesita más trabajo de detalle.


A la mayor parte de la Unidad 5 no se le ha asignado edad. Posiblemente algunas de las capas superiores son triásicas, aunque existen capas rojas que son similares a las capas del Dockum Group de Texas. Tal vez la Unidad 5, a pesar de su espesor, fue rápidamente depositada; las capas más jóvenes de la Unidad 5 pueden ser no más jóvenes que el Guadalupiano.

CORRELACIONES

Debido a que la edad de la Unidad 5 es incierta, no se intentó correlacionarla con los estratos de Texas. La similitud litológica general de las rocas paleozoicas? de Aldama (principalmente limolita) y de Samayaluca (arenisca conglomerática), con la mayor parte de la Unidad 5, sugiere que sean correlacionables. No se encuentra limolita prepérmica en el área de Placer. Parece poco probable que en los 56 km entre Placer de Guadalupe y Aldama, más de 300 m de la limolita de Aldama, puedan correlacionarse con algo más que la Unidad 5 del área de Placer. La Figura 14 muestra correlaciones locales.

Cerca de Las Delicias, Coahuila, la edad de la sección pérmica fue asignada por fusulínidos y amonoides y alcanza desde el Wolfcampiano hasta Guadalupiano (King et al., 1944). Probablemente parte de esta sección es un equivalente marino de la parte superior de la Unidad 5, la cual es un depósito marino somero o puede ser no marino.

Existe tanto parecido entre el complejo arrecifal y el Arrecife Capitán, de edad más joven, que ha resultado útil compararlos. El color en general es el mismo; la dismicrita en la SD 148 es idéntica a la dismicrita de las grutas

Símbolos litológicos en la fig. II

FIGURA 14.—Correlación de las secciones medidas en la Unidad 5.

de Carlsbad; mucho de la roca "algal" es similar en ambos lugares. La principal diferencia desde luego es el tamaño y el desarrollo del arrecife frontal.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

De acuerdo con Newell *et al.* (1953, p. 97-98): "los arrecifes pérmicos han sido ilustrados por ejemplos de edad wolfcampiana y leonardiana en la Sierra Diablo y en las montañas Glass".

Los derrames de riolita intercalados en la sección de Las Delicias, Coahuila (King et al., 1944), puede muy bien pertenecer al mismo episodio volcánico que el derrame de Mina Plomosas.

UNIDAD 6

DEFINICIÓN

La Unidad 6 está compuesta de lutita, caliza lutítica, caliza, y capas de arenisca. El conglomerado calizo basal local y el mármol que resultó de la mineralización terciaria (?), se han cartografiado y se discuten como unidades por separado.

En algunas localidades la base de la Unidad 6 descansa discordantemente sobre la parte superior de la Unidad 5 y en otros lugares descansa con discordancia angular sobre rocas más antiguas. La parte superior de la Unidad 6, entre Placer de Guadalupe y San Sóstenes, parece ser gradacional con la Formación Las Vigas. Dentro del área de Plomosas las gravas y aluvión terciarios y cuaternarios cubren a la Unidad 6 con discordancia angular.

Bridges y DeFord (1961, p. 101 y 102) se refieren a parte de la Unidad 6 de Mina Plomosas como la "Unidad 7".

ESPESOR Y DESCRIPCIÓN

El espesor medido en la Unidad 6 es como sigue

CIRE		0.00	
\mathbf{SM}	3	300	m
SM	6	270	m
SM	7	140	m
SM	10	1.000	m

La SM 10, medida en el camino del arroyo, es la única sección completa de la Unidad 6. Se midió con una cinta de acero sobre un terreno irregular y de afloramientos pobres; probablemente tenga un error de 70 m a 150 m.

La caliza de la Unidad 6 se caracteriza por su falta de pedernal, aunque en La Sofía aflora una capa delgada cerca de la cima que es lutítica. Tanto la caliza como la caliza lutítica tienen estratos medios a delgados. La mayor parte de la arcilla de la arenisca de la Unidad 6 ha sido reconstituida por sericita.

Las secciones delgadas de la arenisca de la Unidad 6 se clasifican como sigue:

SD 6-1-25 Arena muy fina: ortocuarcita silícica, submadura, con pedernal y manchas de limolita.

- SD 6-2-325 Arena muy fina: arcosa calcítica, submadura.
- SD 6-3-20 Arena fina: subarcosa silícico-sericítica, no madura.
- SD 7-4-25 Arena fina: ortocuarcita silícico sericítica, submadura, con pedernal.
- SD 7-2-15 Arena fina: ortocuarcita, sericiticosilícea, submadura.

El feldespato de la arcosa y la subarcosa, se derivó del intemperismo de la Unidad 5, probablemente de la riolita de la Unidad 5.

La arenisca es más o menos la misma que la de la Unidad 5 pero en sección delgada la porosidad es mayor. La mayor porosidad observada (en SD 6-1-25) es 15%. La arenisca de la Unidad 1 difiere de la arenisca de las Unidades 5 y 6; la porosidad es menor, los granos de arena están mejor clasificados y son mayores (arena media). Las capas de la arenisca de La Sofía, contienen granos más grandes que las capas de arenisca de la Unidad 1, la clasificación es menor y la porosidad es mayor. En La Sofía también existe arenisca conglomerática en la que los granos mayores son de tamaño de cantos. La estratificación es gradual y los rasgos primarios son característicos de turbiditas.

La lutita de la Unidad 6 es de estratos delgados a muy delgados. La parte superior de las capas de lutitas es yesífera en tanto que las capas inferiores de la lutita son altamente carbonosas y pueden ser buenas almacenadoras de petróleo.

Zonas litológicas.—La SM 10 puede dividirse en tres zonas litológicas: 1) la zona más baja de lutita de color gris a negro, arena, y caliza lutítica (estrato 1-3); 2) una zona intermedia de lutita, de color morado claro, poco yesífera y arena (estrato 14-17); 3) una zona superior de caliza de color gris y de caliza lutítica sin amonitas (estrato 18-23). La SM 3 y la SM 7 pertenecen principalmente a la zona intermedia y la SM 6 está dentro de la zona inferior.

Conglomerado calizo.—El conglomerado calizo basal es una facies local atípica de la Unidad 6, cercana al arrecife de Mina Plomosas. En 0.4' N-16.3' W los pequeños parches de conglomerado basal de la Unidad 6, están compuestos de pequeños fragmentos de la "formación verde" en una matriz calcárea.

Cerca de Mina Plomosas, el contacto basal entre la caliza arrecifal de la Unidad 5 y la caliza conglomerática de la Unidad 6 es difícil de encontrar, debido a que la mayor parte del material conglomerático pertenece al arrecife subterráneo subyaciente. Arriba de la caliza, el conglomerado es gradacional con una caliza conglomerática y con caliza; el contacto superior es arbitrario. Para poder cartografiarlo, el contacto superior se colocó en la caliza más alta proveniente del arrecife que contiene material del tamaño de cantos.

El espesor medio del conglomerado calizo en la SM 3 y la SM 7 es de 130 m y 120 m, respectivamente. Probablemente el espesor máximo del conglomerado calizo basal expuesto, es de unos 150 m.

Probablemente hubo en el arrecife, durante el depósito del conglomerado calizo, de 15 m a 70 m de relieve topográfico; hubieron valles desarrollados en la superficie del arrecife que tenían el mismo curso pero no eran tan profundos como los valles del sistema de drenaje actual. La parte oriental del arrecife estaba topográficamente más alta que la parte occidental durante el

Tabla 9.—Unidad 6: Composición en por ciento (La composición mineral suma 100%, incluyendo los fósiles)

Sección delgada número	Calcita espática recristalizada (.02 - 2.0 mm)	Microespato (.00502 mm) Micrita (.001005 mm)		errígeno y tamaño	Varios	Fósiles
3-4-200	15	5 micrita 45 microespato	35 aı	rcilla		15 espículas
3-4-80	78		20 aı	rena m.f.	2 hematita tr. de leucoxeno	
3-3-90	20	25 microespato	40 ar	cilla	15 yeso (relleno de veta)	
6-1-25	1		83 ar	rena m.f.	3 pedernal 10 limonita 3 magnetita	
6-2-325	20		75 ar	ena m.f.	3 limonita 2 leucoxeno tr. de clorita	
5-2-565	32	50 microespato	15 lir 3 ar		iii de cioiita	
5-2-725	18		10 lin 72 ar	no		3 equinodermos
5-3-20	1		96 ar		2 pedernal 1 sericita	
7.5.200 7.4.25	15 (relleno de veta)	78 micrita	5 lin		tr. de limonita	
-4-23			94 ar	ena 1.	3 pedernal 3 sericita	

7-3-90		18? microespato	80?	2 magnetita tr. de hematita
7-2-15 53	60	37 microespato	97 arena f.	3 sericita 3 feldespato 50 pelecípodos autigénico 1 gasterópodo
73	2 (relleno de veta)	76 micrita	2 limo 20 arcilla	autigenico i gasteropodo
77	15	70 micrita		10 gasterópodos 15 espículas silíceas
78	5	95 micrita	tr. de limo	tr. de (esponja?) pedernal
		Conglo	merado de caliza	
3-2-cima	72	20 microespato 5 micrita	2 arena f. 1 arena m.f.	1 equinodermo 5 limonita
3-1-25	58	15 microespato 3 micrita	15 limo 3 arcilla	tr. de pedernal
67	71	17 microespato 2 micrita	1	3 feldespato 3 equinodermos 5 pelecípodos
X	25	75 microespato		20 corales
			Mármol	
3- 5 - 1 0 3- 4 -300	30 95	68 microespato	2 limo	4 feldespato autigénico
7-6-5	98			l veta de cuarzo l feldespato autigénico
75	99			l veta de cuarzo l limonita
76	10	89 microespato	tr. de arena m.f.	1 feldespato autigénico 10 equinodermos

GEOLOGIA DEL AREA DE PLOMOSAS, CHIHUAHUA

depósito del conglomerado calizo. Esto puede verse al correlacionar las capas de la SM 7 con las capas en la SM 3. Posiblemente el conglomerado calizo se desarrolló en el lado norte de una isla pequeña formada por la parte alta más oriental del arrecife.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

El conglomerado calizo y la caliza conglomerática no contienen caliza lutítica de color morado claro, pero son de color gris obscuro (N3), masiva, y con vesículas. El material conglomerático del arrecife es de color café claro. Cerca de la base, existen algunos cantos rodados; la mayoría de los clásticos son más pequeños que los cantos.

La caliza es dominantemente calcita cristalina y microspato. Es difícil asegurar cuantos de los cristales son el resultado de la recristalización, pero ciertamente muchos de ellos lo son. Unos cuantos de los cristales presentes en SD 3-2-cima, tienen láminas gemelas como las tiene el mármol; esto sugiere una historia geológica similar a la del mármol.

Mármol.—Las capas que se cartografiaron como mármol, se encuentran por entero dentro de la Unidad 6. Un poco de la Unidad 4 a lo largo de una falla cercana a 3.2' N - 13.9' W, está parcialmente marmolizada. Existe una capa de mármol blanco, de unos 6 m de espesor, en la Unidad 5 en 4.2' N. 16.5' W. En 6.9' N · 15.3' W, aflora otra capa de mármol de 1.50 m de espesor dentro de la Unidad 6; en la parte superior de la SM 10, entre Placer de Guadalupe y San Sostenes, afloran de 6 m a 12 m de mármol. Este mármol fue cartografiado por Still en 1945 como yeso.

En el extremo noroccidental de las capas de mármol (6.2' N-16' W), existe un pequeño afloramiento de la Unidad 4 rodeado por aluvión. Este afloramiento está fuertemente marmolizado; posiblemente es parte de la Unidad 6. Contiene pedernal y es masivo; es parecido a la Unidad 4. Un pequeño afloramiento de la Unidad 1 aún más hacia el noroeste, a lo largo de la traza de la falla, también está marmolizado.

Las capas de mármol de la Unidad 6, se extienden 5.5 km a lo largo del frente de la cadena montañosa de Mina Plomosas. Son más resistentes que la caliza lutítica de la Unidad 6 y consecuentemente forman planchas o cuestas. Forman la parte más conspicua de la sierra y desde la distancia se parecen mucho a las planchas de la Novaculita Caballos que afloran cerca de East Bourland Mountain, en la Cuenca de Marathon en Texas.

A lo largo del afloramiento hay dos capas de mármol separadas por un intervalo de caliza lutítica. Otros geólogos que trabajaron para la American Smelting and Refining Co., en Mina Plomosas, llamaron a la capa superior "el mármol Cuevitas"; al miembro intermedio de caliza lutítica "lutita Patio", y a la capa inferior "mármol Mina Vieja". Estos nombres informales son útiles en la mina, pero no han sido propuestos formalmente. De acuerdo con estos geólogos "Cuevitas" tiene 8 m de espesor, "Patio" tiene de 30 a 40 m y "Mina Vieja" de 20 a 30 m de espesor. Los cuerpos de mármol se engruesan y adelgasan y no son continuos, particularmente en el extremo noroeste. En algunas localidades el mármol contiene xenolitos de caliza no alterada de color gris obscuro de 15 m a 30 m de longitud.

En contraste con la caliza microcristalina, carbonosa y de color gris obscuro, en la que se encuentra la mayor parte del mármol, éste es blanco. En donde el

mármol se adelgasa, generalmente tiene manchas limolíticas de color café amarillento. Las soluciones hidrotermales parecen haberle dado las impurezas obscuras de la caliza durante la formación del mármol.

El tamaño del grano de mármol de Mina Plomosas, es muy variable, alcanzan de 0.1 mm a 1.5 mm. Los granos tienen bordes agudos y las láminas paralelas están comúnmente dobladas.

Las partes más delgadas del mármol están brechadas. Los bloques brechados son afilados como los cantos de un conglomerado aplastado; tienen un arreglo casual. El largo de los bloques es de 0.30 mm o menos en promedio. Lovering (1958, p. 700) describe una dolomita hidrotermal brechada similar a ésta, asociada con menas de sulfatos en Gilman, Colorado.

RASGOS ESPECIALES

Origen del mármol.-La presencia de 15 m o más de lutita suave, varios cientos de metros estratigráficamente más baja que las capas de mármol, parece sugerir la posibilidad de que el mármol resultó de un metamorfismo regional. Las secciones delgadas del mármol de Mina Plomosas, son diferentes a las secciones delgadas del mármol producidas por metamorfismo regional. El mármol metamorfizado regionalmente tiene un tamaño de grano más o menos grande, es de bordes suaves y tiene láminas gemelas rectas.

Los xenolitos, el engrosamiento y adelgazamiento irregular del mármol y la presencia de minerales de plomo y zinc bajo el mármol inferior, sugieren un reemplazamiento hidrotermal.

El gemelamiento mostrado por las láminas, indudablemente es el resultado de una presión diferencial y no de un tectonismo regional. Probablemente los bloques brechados ocurren en los lugares en que se completó el reemplazamiento y la recristalización de la caliza.

Dirección de la fuente de origen de la arenisca.—Muchas direcciones sin rumbo definido, fueron medidas por el autor; ninguna se verificó adecuadamente. Tal vez la dirección de la fuente de origen fue variable.

McBride (1962) encontró cuatro rasgos direccionales cerca de La Sofía en 1.9' N · 16.3' W, que indican una dirección original de N 40° W a N 60° W.

Clima del Jurásico Tardío.—Folk (1961a, p. 81-82) sugiere para determinar las condiciones climáticas de depósito la técnica basada en el arredondamiento de los granos de feldespato, promedio del grado de alteración del feldespato y homogeneidad de la alteración en los varios tipos de feldespato. Usando esta técnica, la SD 6-2-325 indica un clima templado.

PALEONTOLOGÍA

Los fósiles característicos de la Unidad 6 son amonitas. Young (1962) identificó los siguientes:

> Idoceras? sp. Kossmatia alamitoensis (Castillo y Aguilera) K. kingi Imlay K. rancheriaensis Imlay

73

GEOLOGIA DEL AREA DE PLOMOSAS, CHIHUAHUA

72

K. varicosta Imlay Pseudolissoceras? sp. Subplanites fresnoensis Imlay S. cf. S. aff. S. reisi (Scheid) Imlay. Virgatosphinctes adkinsi Imlay V. chihuahuensis Imlay V. cf. denseplicatus (Waagen) V. guadalupensis Imlay

Muchos otros géneros pueden indudablemente estar presentes, pero es necesario efectuar una mejor colecta y búsqueda de fósiles. Solamente una amonita se encontró cerca de la cima del conglomerado calizo.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

Dentro de la SM 10 (Tabla 10) se proponen tentativamente cinco zonas generales de amonitas. Probablemente una colecta sistemática ayudará a extender estas zonas y señalará otras zonas importantes. Las edades sugeridas por Spath y Arkell se añaden para señalar los problemas de la asignación de edad.

En todas las zonas, excepto en la zona 4, abundan las amonitas. La zona

1 y la zona 4 dieron un sólo género de amonitas.

La zona 1, zona de Idoceras?, contiene solamente amonitas aplastados pequeños (de 0.05 mm a 0.10 cm en diámetro). La zona 2, zona de Pseudolissoceras?, presenta las amonitas mejor conservadas. La zona 3 ó zona de Subplanites, tiene las amonitas de mayores dimensiones. Algunos especímenes de la zona 3, en la SM 6, son de casi 0.60 m de diámetro. La zona 4 o zona de Virgatosphinctes cf. denseplicatus, en la SM 10 no está bien definida, pero es importante en la SM 6. La zona 5, o zona de Kossmatia presenta varias especies y se caracteriza por fragmentos de amonitas de color negro, pequeñas y quebradas, excepto en la SM 7 de la que se colectaron casi todas las amonitas expuestas.

En algunas localidades los pelecípodos de la Unidad 6 son abundantes particularmente en las capas de arenisca de La Sofía, en donde no hay amonitas. Los individuos de concha suave, probablemente Gryphaea, están pobremente conservados y en la Unidad 6 se parecen mucho unos a otros, excepto en la facies de conglomerado calizo en donde aparecen más grandes y son diversos. La mayoría de ellos tienen color negro. En algunas localidades varían desde el tamaño de una uña hasta 4.5 a 10 cm de largo.

Los fósiles característicos del conglomerado calizo, son pelecípodos grandes parecidos a Gryphaea y corales coloniales. Los pelecípodos, que son difíciles de colectar, varían en tamaño de 5 a 18 cm de largo. Los más grandes usualmente tienen conchas gruesas. En sección delgada, muchas de estas conchas tienen costillas longitudinales prominentes de color negro y blanco que pueden representar capas de crecimiento.

Los corales coloniales, que se encuentran solamente en la facies de conglomerado calizo, son menos abundantes que los pelecípodos. Las colonias alcanzan 1.80 m de diámetro y están compuestas por corales delgados y en forma de ramas. Unas cuantas espinas de equinoides se encontraron en el conglomerado calizo durante la búsqueda sin éxito de microfósiles. Tubos de gusano de 1 cm

Edad	Arkell (1956)	Titoniano medio Titoniano temprano	Principio de Kimeridgiano tardío	finales del Kimeridgiano medio Principio de Kimeridgiano tardio a	finales del Kimeridgiano medio Kimeridgiano temprano
	Spath (1950)	Titoniano tardío Titoniano temprano	Kimeridgiano tardío	Titoniano medio	Kimeridgiano
	Amonita ———	Kossmatia Virgatosphinctes	cf. desemplicatus Subplanites	Pseudolissoceras?	Idoceras?
	Zona	ro 4	က	2	-

75

de diámetro, con forma de amonitas pequeñas, se encontraron en el estrato 1 de la SM 6.

Larson (1961) encontró muchas esporas químicamente insolubles en el ejemplar de mano 108 del estrato 5 de la SM 10. Estas esporas no han sido identificadas. También se encontraron hojas y tallos en un plano de estratificación del mismo ejemplar.

EDAD

La edad de la Unidad 6 es el Jurásico Tardío y posiblemente en parte es del Cretácico Temprano (Neocomiano). De acuerdo con Young, la edad de las amonitas varía del Kimeridgiano al Tithoniano, aunque para substanciar la separación de zonas es necesario hacer más trabajo exploratorio y estudios comparativos con las colecciones europeas. Imlay (1943) sugirió esencialmente la misma edad para las capas con amonitas de Placer de Guadalupe.

Los pelecípodos más pequeños del conglomerado calizo, son similares a los de otras partes de la Unidad 6; el conglomerado es gradacional con la caliza de esta unidad. No hay duda respecto a que la edad de esta facies es del Jurásico Tardío. No se identificaron fósiles oxfordianos o neocomianos en la SM 10; probablemente no se encuentran presentes las capas oxfordianas. Encima de la zona de amonita 5, se encuentran 205 m de caliza en la que no se han encontrado amonitas. Esta secuencia de caliza puede pertenecer parcialmente al Neocomiano.

La edad del mármol es jurásica o post-jurásica. La marmolización fue contemporánea con la mineralización. La edad de la mayor parte de la mineralización en Chihuahua es terciaria; el mármol fue probablemente formado durante el Terciario.

CORRELACIONES

La mayor parte de la Unidad 6, exceptuando las capas mineralizadas de Mina Plomosas de las que se piensa que son paleozoicas, ha sido cartografiada como Formación La Casita (cf. King y Adkins, 1946, lám. 1, y Díaz G., 1956, p. 41 y fig. 5). Díaz G. tentativamente correlacionó la sección caliza suprayacente a la zona 5 de amonitas, con la Formación Torcer de edad neocomiana que aflora en las Montañas Malone de Texas. Esta correlación la hizo basándose en la similitud litológica y posición estratigráfica general; puede no ser correcta.

Arkell en 1956 (p. 566-567) evaluó la correlación de Albritton en las rocas neocomianas y del Jurásico Superior de las Montañas Malone, como sigue:

FORMACIÓN ESPESOR EN METROS EDAD GÉNERO DE AMONITAS CARACTERÍSTICO

Torcer cerca de 390 Valangiano Neocomites

BERRIASIANO Y TITHONIANO SUPERIOR FALTA

Malone superior 145-320 Tithoniano medio Kossmatia Malone inferior 0-665 Kimerdgiano Idoceras

Spath (1950, p. 131), en su trabajo sobre una nueva fauna tithoniana del norte de Iraq, sugiere las siguientes divisiones del Tithoniano:

EDAD GÉNERO DE AMONITAS CARACTERÍSTICO

Tithoniano superior
Tithoniano medio Pseudolissoceras
Tithoniano inferior Virgatosphinctes

Indans (1954) describió la fauna de amonitas del Tithoniano inferior de Argentina, el cual es exclusivamente perisphinctido (prácticamente todos *Virgatosphinctes*). Estableció que esta fauna tiene afinidad cercana con la fauna del Tithoniano inferior de la región Indo-Himalaya.

Según señaló Arkell (1956), tres faunas de amonitas se desarrollaron por separado durante la época del Jurásico Tardío. Estas son llamadas Tethyana, Europea noroccidental y Boreal. Las amonitas del Jurásico Tardío de Chihuahua, caen dentro de la provincia Tethyana. El principal problema en la correlación se encuentra dentro de la zona del Tithoniano inferior y el Kimeridgiano superior de esta provincia. Arkell comentó (1956, p. 562):

"Es todavía imposible, colocar todas las formas satisfactoriamente en los géneros existentes, o marcar un límite definido entre el Tithoniano y Kimeridgiano."

En el norte de México, la Formación La Caja es la facies caliza y la Formación La Casita es la facies de lutita, lutita arcillosa, y de arenisca, del Jurásico Superior. Ambas formaciones son generalmente correlacionables con la Formación Malone. Algunas amonitas de la Formación Malone pueden ser más antiguas que las amonitas colectadas en el área del mapa. La fauna de amonitas del Jurásico Superior de las capas cercanas a Samalayuca, todavía no ha sido estudiada a conciencia.

Localmente la SM 7 se correlaciona con la SM 10 (Figura 15), debido a que ambas contienen: (1) abundantes Kossmatia; (2) lutita yesífera de color morado pálido, (3) una capa gruesa de arenisca, (4) capas de caliza en posición similar. La SM 3 está alineada con la SM 7, las capas pueden proyectarse de sección a sección. No hubiera sido posible correlacionar la SM 3 con la SM 10 sin la SM 7.

La SM 6 se correlaciona con la SM 10 (Figura 15), porque ambas contienen: (1) abundantes amonitas grandes de la zona 3, (2) la zona de amonitas 2, 3, y 4 están en posición similar, (3) lutita gris a negra, (4) capas de arenisca. Es notorio que el espesor entre las zonas de amonitas 2, 3 y 4 en la SM 6 es me-

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

FIGURA 15.—Correlación de las secciones medidas en la Unidad 6.

nor que el espesor entre estas zonas en la SM 10. Probablemente este es el resultado de una mejor colecta y una mayor abundancia de amonitas en la SM 6, más que una depositación lenta en la SM 6.

Además de las correlaciones locales, se puede correlacionar las capas de caliza de la cresta de La Sofía y las capas de caliza que cubren las crestas más altas de la cadena montañosa a 3.5 km al sur de Placer de Guadalupe y que están alineadas con La Sofía y con la zona litológica 3 de la Unidad 6. El conglomerado calizo se correlaciona con la SM 10 debido a su posición estratigráfica.

ROCA CRETÁCICA

No se encuentran rocas de edad cretácica en el área de Plomosas, a no

ser que la parte superior de la Unidad 6 sea cretácica.

La Formación Las Vigas, compuesta de limolita y arenisca roja, gris y verde, aflora entre Placer de Guadalupe y San Sóstenes a 7 ó 8 km al sur de Placer de Guadalupe. Su espesor cerca de San Sóstenes puede ser de 650 m. Pequeños caracoles (0.5 cm de diámetro) se colectaron de una limolita verde, en la base de Las Vigas a 10 m de la cima de la SM 10. Esta limolita verde es muy parecida a la roca de la "formación verde" de la Unidad 5. De la base de la sección tipo Las Vigas, al sur de Cuchillo Parado, Young y DeFord (1960) colectaron caracoles similares.

Entre Placer de Guadalupe y la ciudad de Chihuahua, existen varias cadenas montañosas compuestas de caliza del Cretácico Inferior, de color gris obscuro y relativamente no fosilífera. Durante la colecta de amonitas se encontró además los siguientes fósiles: Kingena sp., varios equinoides y fragmentos de caprínidos. Los fragmentos de caprínidos se colectaron al noroeste del cruce de caminos entre Placer de Guadalupe-Coyame y el de la ciudad de Chihuahua. En la Sierra de La Encantada, King y Adkins (1946, lám. 1) cartografiaron la caliza como Caliza Aurora. El espesor combinado de las Formaciones Cuchillo y Aurora es de más de 1,000 m.

Cuando se viaja en avión directamente de Mina Plomosa al aeropuerto de Chihuahua, el avión vuela al sureste del camino y del ferrocarril, entonces son visibles grandes afloramientos de lutita y caliza lutítica del Cretácico Superior en los valles entre las altas cadenas montañosas compuestas de caliza del Cretácico Inferior. Los mejores afloramientos de rocas del Cretácico Superior, están a ambos lados de la cadena montañosa (Sierra del Morrión) que bordea al extremo suroccidental del Huérfano. Estos afloramientos del Cretácico Superior se encuentran varios kilómetros al sureste del camino, de tal manera que no pueden verse. El espesor puede ser del orden de los 330 m, probablemente el espesor original fue mucho mayor.

King y Adkins (1946, lám. 1) cartografiaron los "picachos" localizados al noroeste de la Estación de Picachos, como roca paleozoica. Still (1947) se dio cuenta de que los picachos están compuestos de roca cretácica.

Young identificó los siguientes fósiles colectados por DeFord en una zona lutícia en el extremo norte del picacho occidental: Oxytropidoceras sp., Adkinsites bravoensis (Rose) UT 38529; Adkinistes n. sp. UT 38541, UT 38544; Enallaster texanus (Romer) UT 38547; Neithea sp. UT 38533; Protocardia sp. UT 38548;

Tylostoma sp. UT 38545; molde interno de caprínido? UT 38546. Basándose en estos fósiles la capa de los que se colectaron es correlacionable (Young, 1962) con la Formación Kiamichi de la Bahía Oriental de Texas.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

ROCA IGNEA

La roca ígnea del área del mapa se ha considerado como del Terciario, porque intrusiona roca cretácica; además porque no está fallada, y porque la mayor parte de los afloramientos de roca ígnea en Chihuahua son terciarios. No se encontraron fósiles en las tobas del área.

Dentro del área de Plomosas existe relativamente poca roca ígnea terciaria, aun en comparación con la riolita pérmica de la Unidad 5. De acuerdo con Clabaugh (1961), la roca de la pequeña intrusión mostrada en la Lámina 1, es una microsienita máfica. Esta roca tiene una matriz de color blanco y es verdosa cuando abunda el contenido de mica de grano grueso. Los cuerpos ígneos están muy erosionados y son de forma irregular; la mayoría intrusiona a una lutita suave o limolita. Un dique de traquita de color blanco con espesor máximo de 6.5 m, corta las capas de limolita de la Unidad 5 en 3.3′ N - 14.3′ W. Este dique es homogéneo y de grano fino, de tal manera que el espécimen de mano parece una roca sedimentaria. La SD 21 muestra que la roca está compuesta de 60% de feldespato casi esferulítico, 20% de mica (clorita o muscovita) y 20% de calcita.

La superficie de un diquestrato delgado dentro de la SM 5 está tan intemperizada que parece también una roca sedimentaria. Los afloramientos frescos muestran cristales de piroxena verde o anfíbola (posiblemente hiperstena) hasta de 3 mm de largo, embebidos en una matriz blanca o verde claro. La roca está principalmente reemplazada por calcita y los contornos de la piroxena y anfíbola son difíciles de distinguir en la sección delgada.

Los tres cuerpos pequeños de roca ignea de color blanco, de apariencia tobácea, que se encuentran en 7.3′ N - 15.9′ W, 6.9′ N - 15.7′ W, y 7′ N - 14′ W, están compuestos de fragmentos de material suave, de grano fino, que ha sido quebrado en fragmentos angulares de 2.5 cm a 0.65 cm. La roca en estos afloramientos se parece superficialmente a la roca del dique de traquita, pero es mucho menos coherente. La SD 178, colectada en el mayor de los tres afiloramientos y la SD 15 contienen muchos granos de cuarzo carcomido y hojuelas de mica. Todos los granos son casi del mismo tamaño. La SD 52 del extremo sureste de Picachos, al noroeste de la estación del ferrocarril, es un derrame muy parecido a la SD 15 y SD 178. Por estas razones la roca blanca se considera como una riolita alterada.

Cerca de Placer de Guadalupe existen varios afloramientos de roca ígnea. La roca de una intrusión grande, blanca, que aflora sobre el camino de la ciudad de Chihuahua a Placer de Guadalupe, ha sido llamada andesita por Díaz G. (1956, p. 38). La sección delgada 69, en que se estudió esta roca indica que es una sienita porfídica; los fenocristales son de feldespato alcalino, probablemente en parte ortoclasa o albita.

King y Adkins (1946, lám. 1) cartografiaron varios cuerpos grandes de riolita extrusiva terciaria cerca de Placer de Guadalupe. Estos afloramientos no se estudiaron.

ABLA 11.—Roca ígnea: Composición en por ciento

Sección delgada número	Localidad		Cuarzo		Feldespato		Mica	Calcita	Varios	
21	7' N . 15' W 3.3' N . 14.3' W	25	25 granos	99	66 muy sericitizado 60 (esferulítico?)	20 10	6 clorita 20 (clorita?) 10 (clorita?)	20	2 hematita 90 matriz	
38 3	potreto ver texto	12	12 carcomido	35	35 ortoclasa sericitizada tr. de plagioclasa	က	3 muscovita	4	45 matriz 5 limonita	
43	5.7' N - 15.1' W	2	2 (relleno de veta)					40	57 matriz 1 hematita	-
44	5.3' N - 16.95' W conglomerado a 4' N - 16.5' W	15	15 carcomido	15	25 (ortoclasa?) 15 principalmente ortoclasa con gemelamiento	25 tr.	25 biotita tr. de clorita	20	70 matriz	
52 56 59	ver texto 6.4' N - 16.3' W 5.4' N - 16.2' W	30	30 granos 15 (parte de	65	Carlsbad 65 muy sericitizado 14 (ortoclasa?)	10	10 (clorita?) 20 clorita	75	5 hematita 1 limonita 5 limonita	E 1 1
*09	conglomerado a 3.2' N - 16.5' W	-	feldespato?) carcomido subedral	15	15 principalmente ortoclasa				75 matriz 1 magnetita	ta
64	5.2' N · 16.5' W ver texto	10 70	2 vetas de cuarzo 2 fenocristales 10 (sedimentario	13	13 (ortoclasa?) 45 matriz			85 35	10 limonita	-
89	ver texto	10	retrabajado?) 10 ligeramente	10	10 plagioclasa			21	64 fragmentos de	itos de

roca volcánica 10 ópalo 3 (pedernal?) 1 Hornblenda basáltica	62 matriz 10 limonita	2 limonita		80 matriz
		l (relleno de veta)	75	
		4 clorita	15 muscovita	
	25 zonado. gemelado, sericitizado	ado		7 ortoclasa 3 plagioclasa
carcomido principalmente anedral	3 posiblemente 25 secundario		10	10 carcomido 7 subedral 3
	ver texto	7.3' N - 15.9' W 25 granos	MS 5	
	69	178	5.1.50 MS 5	8-31-10* MS 8

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

Contiguo al lado sur del picacho oriental, al noroeste de la estación del ferrocarril, un cuerpo intrusivo alto y rojizo corta la caliza cretácica; su edad es del Cretácico Temprano o más joven y es anterior al fallamiento del picacho. La sección delgada 66 de roca ígnea, incluye 50% de material sedimentario. El material igneo es dominantemente feldespato de grano fino sin gemelación. La roca es una traquita o una riolita dependiendo de que el cuarzo sea de origen sedimentario o ígneo. Posiblemente esto fue un cuello volcánico. Un material similar aflora aproximadamente a 1.5 km al suroeste en el lado opuesto del camino de Picachos a Placer de Guadalupe.

Cerca del extremo noroccidental de la sierra principal, dentro de la Unidad 6. a unos 3 km al sur de Placer de Guadalupe aflora un pequeño dique de granito (SD 38) con la misma orientación general que el dique de traquita que se encuentra en 3.3' N-13.3' W. El granito es de grano más grueso que la traquita y contiene 12% de cuarzo mucho del cual está carcomido.

Una roca tobácea verde claro (SD 68) aflora a lo largo del camino entre Picachos y Placer de Guadalupe. La SD 68 es una arena fina: arcosa volcánica cementada con ópalo. Esta roca suprayace a la "formación verde" y puede ser parte de ella, aunque es más probable que sea de edad terciaria.

En resumen puede decirse que la roca ígnea terciaria en el área del mapa es predominantemente sienita.

GRAVA CONCHOS

El nombre "Grava Conchos" se aplicó a la grava que aflora cerca del Río Conchos (Burrows 1910, p. 102). En la parte oriental de Chihuahua, la Grava Conchos llena los valles entre los levantamientos localizados en la cuenca de drenaje del Río Conchos, formando un depósito grueso y extenso.

En el área que abarca el mapa no existe un buen lugar para medir el espesor de la Grava Conchos, su máximo espesor probablemente excede los 150 m. King y Adkins (1946, p. 290) estimaron un espesor de varios cientos de

Litológicamente la Grava Conchos se compone de material clástico que varía en tamaño desde guijarros hasta arcilla. Burrows (1910, p. 102) hizo notar que los guijarros no exceden de 30 cm de diámetro. Cerca de los levantamientos, la grava está compuesta dominantemente por cantos; en los valles es gradacional a una grava más pequeña. Los clásticos son derivados de rocas de zonas adyacentes. La grava es, generalmente, de estratos finos, semiconsolidada y con un cementante de caliche.

Cerca de 30 m de arcilla no consolidada de color blanco a rosado se encuentra en la base de la Grava Conchos en 5.2' N - 14' W. Este material puede ser considerablemente más antiguo que la Grava Conchos; no es tobáceo. En 4.2' N - 13.5' W sobre el lecho del arroyo, dentro de la arcilla rosada aflora una caliza de color amarillo naranja pálido a obscuro (10YR-6/6). La capa es irregular, la caliza no está estratificada y contiene mucha calcita fibrosa; probablemente se desarrolló a lo largo de una falla como depósito secundario.

La edad de la Grava Conchos es probablemente terciaria, parte de ella puede ser cuaternaria. Adkins (Young, 1962) reportó huesos grandes en la Grava Conchos.

DEPÓSITOS DE TERRAZA, ALUVIÓN Y COALUVIÓN

Al igual que el Río Bravo, el Río Conchos es el río que principalmente controla el desarrollo de los extensos depósitos de terrazas cuaternarias. Dentro del área de Plomosas, existen terrazas relativamente distintas; a unos 16 km de Plomosas aflora un buen número de ellas.

La grava y conglomerado cartografiado como "depósitos de terraza" (Lámina 1), forma el nivel más alto de los depósitos de terraza de Mina Plomosas. Este nivel está de 12 a 18 m sobre el nivel presente de los arroyos. Los clásticos

varían de cantos a guijarros y están bien cementados con caliche.

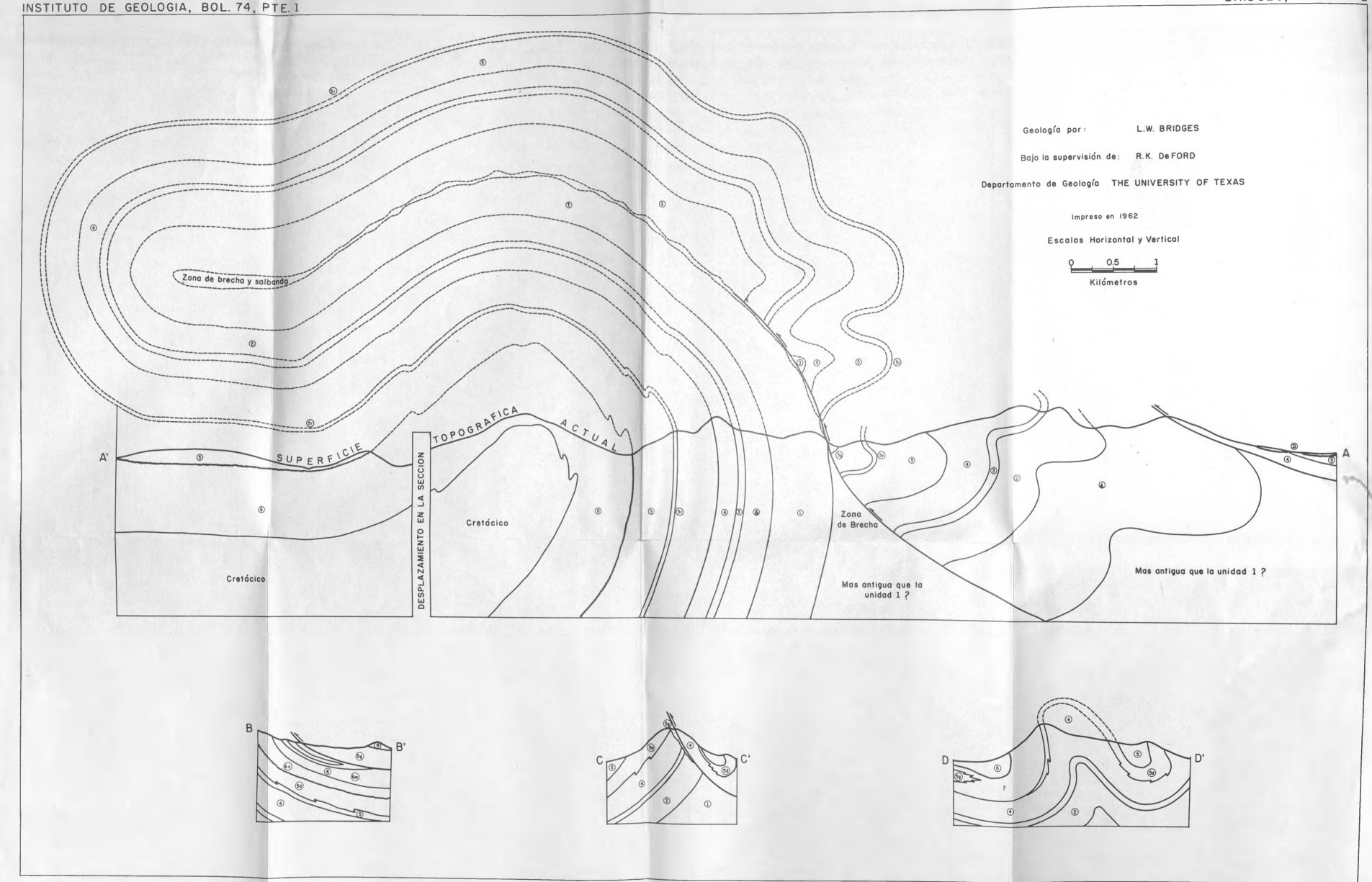
Dietrich (1954, p. 52-54) reportó cerca de Presidio, Texas, 6 niveles de terrazas a lo largo del Río Bravo. Cerca de Mina Plomosas los niveles de terrazas más jóvenes son topográficamente más bajos que el nivel más alto y están ya muy destruídas por la erosión reciente. Mina Plomosas no es el mejor lugar para estudiar el desarrollo de las terrazas del Río Conchos, sin embargo, de un examen concienzudo, se obtiene la impresión de que no existen en ellas más de cuatro niveles, incluyendo el nivel presente.

Las terrazas inferiores se cartografiaron junto con el aluvión, el cual se compone generalmente de clásticos más pequeños que la grava de los "depósitos de terraza" (Lámina 1). Un depósito de limo no consolidado, de 2 a 3 m más alto que el nivel presente del arroyo, contiene pequeños caracoles de 1 cm a 1.5 cm de diámetro. La pista de aterrizaje que se encuentra en 6.6′ N - 14.8′ W está construida sobre este material; abundante limo no consolidado está presente inmediatamente al norte y al oeste de la pista de aterrizaje.

Con excepción de los caracoles, no se encontraron otros fósiles en los de-

pósitos cuaternarios.

En el mapa se usa el mismo símbolo para el aluvión y coaluvión. El coaluvión es el material que se encuentra en las áreas planas, de elevación moderada, en la base de los desfiladeros, etc.


TRAVERTINO

Existen varios depósitos de travertino en el flanco nororiental de la cadena montañosa del sureste de Mina Plasmosas y en los arroyos que se encuentran entre los afloramientos de mármol. La mayoría de ellos son pequeños para cartografiarse; los mayores depósitos de travertino se encuentran en 3.9′ N - 13.4′ W, 4.1′ N - 13.5′ W y 4.3′ N - 13.3′ W y se muestran en la Lámina 1.

Parte del travertino se encuentra en el mismo nivel topográfico que el depósito de terraza más alto; en cada afloramiento, cuando menos una parte del travertino, está a un nivel inferior que la terraza más alta. La mayoría del travertino probablemente se formó después del depósito de la terraza más alta y probablemente todavía se esté formando.

Los depósitos más grandes están en 4.1' N - 13.5 W; pueden ser de interés comercial local como piedra decorativa.

SECCIONES ESTRUCTURALES DE LA REGION DE MINA PLOMOSAS CHIHUAHUA, MEXICO

ESTRUCTURA

MARCO REGIONAL

DeFord (1958) propuso el término "faja tectónica de Chihuahua" para los pliegues orientados hacia el noroeste (norte) que se extienden desde el límite internacional y hacia el sur, hasta aproximadamente 75 km al sureste del Río Conchos (al este de la ciudad de Chihuahua). De acuerdo con esta definición, el área del mapa cae dentro de la faja tectónica de Chihuahua. La orientación de las montañas entre Mina Plomosas y Placer de Guadalupe es más al oeste (N50°W) que la mayoría de las cadenas montañosas dentro de la faja tectónica de Chihuahua.

DeFord (1959-1962) se refiere a aquella parte a la que muchos han llamado el "geosinclinal mexicano" de Chihuahua, como el Canal de Chihuahua. En el límite entre Chihuahua y Coahuila, las rocas ígneas obscurecen las relaciones entre el Canal de Chihuahua y el "geosinclinal mexicano". Esta es una nomenclatura conveniente, hacia el sur, para el Canal de Chihuahua. Durante el tiempo jurásico el mar transgredió desde el sur de Chihuahua hacia el norte, hasta las Montañas Malone; desde esta época hasta el Cretácico Tardío debe haber habido una conexión entre el Canal de Chihuahua y el "geosinclinal mexicano". El concepto del Canal de Chihuahua es útil porque es una unidad tectónica conveniente y discreta dentro de una provincia tectónica grande que no ha sido completamente estudiada.

Las rocas cretácicas que cubren a las paleozoicas en el noroeste de Chihuahua y noreste de Sonora, sugieren que un elemento positivo persistió a lo largo de la parte norte de la frontera entre Chihuahua y Sonora, durante el Jurásico y Cretácico Temprano. El Canal de Chihuahua fue ciertamente, un canal durante el Jurásico Tardío.

Como se muestra en el área del mapa, según Raisz (1959; Figura 16) queda en la provincia fisiográfica de cuencas y montes. El fallamiento en bloques, del tipo de cuencas y montes, es importante en el norte y noroeste de Chihuahua; esto no implica que todas las cadenas montañosas dentro de esta provincia, tengan fallamiento en bloque. El fallamiento en bloques está mejor desarrollado en el Condado de Rim Rock, a lo largo del Río Bravo y en los Condados de Jeff Davis y Presidio del Estado de Texas, así como en partes adyacentes de Chihuahua. El fallamiento en bloques es menos imporante hacia Mina Plomosas; está ausente en el área cubierta por la Lámina 1 y probablemente no sea importante entre Mina Plomosas y los derrames volcánicos cercanos a Aldama.

El extremo oriental del terreno volcánico (provincia de tierras altas y cuencas) en el centro de Chihuahua, está levantado e inclinado hacia el oeste. Raisz (1959) con referencia a la provincia de tierras altas y cuencas, hace notar, que a lo largo de la parte oriental de la Sierra Madre Occidental "la planicie cambia a una cuenca sinclinal principalmente llena con aluvión". Las capas de roca volcánica extrusiva de Chihuahua occidental (Sierra Madre Occidental, de los alrededores de la Barranca del Cobre, son casi horizontales.

Para demostrar los cambios estructurales, regionales y graduales, de un terreno con fallamiento en bloques en el noroeste de Chihuahua, a uno predominantemente plegado y con fallas de cobijadura en el área del mapa, se dan varios ejemplos. La historia estructural y la paleogeografía de Chihuahua son poco conocidas; es importante conocer estos cambios regionales para determinar cómo y dónde ensambla el área del mapa en el marco geológico de Chihuahua.

Zeller (1958) se refiere al fallamiento de las Montañas Big Hatchet, en el suroeste de Nuevo México, como "fallamiento de gran ángulo". El cita evidencia de fallamiento mesozoico y terciario de gran ángulo, pero no encontró cobijaduras. El autor visitó las cadenas montañosas adyacentes a Palomas, en el norte de Chihuahua, acompañado de Teodoro Díaz G. y estuvo de acuerdo con él, en que el término fallamiento de gran ángulo, describe con precisión el fallamiento en esta parte de Chihuahua. No se observaron pliegues invertidos, pero puede haber bloques fallados en los que es difícil determinar la desviación del plano de falla respecto a la vertical. Se encontraron tanto fallas inversas como normales. El área tiene fallamiento en bloques con poco plegamiento.

Al este de Samalayuca, el tectonismo laramiano parece haber sido intenso, pues las rocas están muy plegadas. Mas al este, cerca de Cieneguilla, al sur

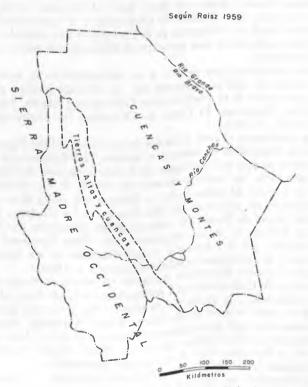


FIGURA 16.—Provincias fisiográficas de Chihuahua.

de las Montañas Quitman, Reaser (1962) reportó una gran área de capas que están completamente invertidas.

El área de Reaser yace cerca del eje del Canal de Chihuahua y ha sufrido tectonismo laramiano violento. Underwood (1962) reportó cobijaduras hacia el oeste de las Montañas Eagle en Texas.

ESTRUCTURA PALEOZOICA

Tal vez la localidad más importante para el estudio de la estructura paleozoica en Chihuahua sea el Levantamiento de Placer de Guadalupe. Virtualmente parece no existir plegamiento o fallamiento en las rocas paleozoicas de Palomas. Las relaciones son obscuras en Samalayuca y complejas en Aldama.

En Mina Plomosas el espesor del conglomerado, los cambios rápidos de facies, y las discordancias angulares de la Unidad 5, indican actividad tectónica principal durante el depósito de la Unidad 5. Establecer una orientación estructural pérmica en Mina Plomosas sería imposible. Actualmente el arreglo de los afloramientos de las rocas precarboníferas de Cerro Enmedio sugieren un pliegue anticlinal cortado en ángulo recto a su orientación original y luego invertido. La tendencia axial prelaramiana restaurada de este afloramiento sugiere una orientación axial pérmica del noroeste al suroeste, la que es tenue. Se intentó reconstruir la estructura premesozoica en el área de Plomosas, desgraciadamente las áreas en que puede medirse la actitud de las capas encima y abajo de la discordancia en las Unidades 5 y 6 son pequeñas para ofrecer alguna información valiosa. Esto podría intentarse con éxito en Aldama. Un estudio petrológico estructural en el área del mapa, sería valioso para verificar la tendencia axial pérmica.

Basándose en la discordancia angular que subyace al arrecife, y en las edades de los fósiles de arriba y abajo del arrecife, el tectonismo paleozoico principió en el Wolfcampiano (probablemente cerca del Wolfcampiano medio). El tectonismo continuó hasta el tiempo Leonardiano y probablemente hasta el Guadalupiano.

Las rocas de la faja estructural Ouachita están expuestas en la Cuenca de Marathon y en El Solitario; la orientación axial paleozoica es de noreste a suroeste en la Cuenca de Marathon. Esto sugiere que la faja estructural Ouachita se extiende en México hacia Mina Plomosas. Las facies generales características de Mina Plomosas y el hecho que la deformación estructural paleozoica es menos intensa que en la Cuenca de Marathon, sugieren que el área de Plomosas yace en el extremo noroccidental de la faja estructural Ouachita. El tectonismo Ouachita en el área de Marathon, probablemente terminó al principio del Wolfcampiano y más o menos al mismo tiempo principió la deformación paleozoica en el área de Plomosas.

ESTRUCTURA LARAMIANA

PLIEGUES

Dos juegos distintivos de ejes de pliegues se encuentran en Mina Plomosas. La parte principal de la sierra tiene una orientación de N 50° W; los pliegues de Santo Domingo tienden hacia el norte. En el área (4' N - 13.7' W), la orientación de los pliegues diverge notablemente. Al sureste del área de Plomosas (Lámina 1) los pliegues orientados hacia el norte gradualmente voltean hasta tener una orientación noroeste (Lámina 3).

La presencia del arrecife masivo y competente, rodeado por limolita incompetente, probablemente sea el responsable de estas dos orientaciones divergentes. Los estratos fueron deformados alrededor del arrecife y no junto con el arrecife. Los rasgos compresionales este-oeste de la esquina noroccidental del área de Plomosas, no parecen estar presentes más hacia el oeste de Placer de Guadalupe.

Las dos orientaciones, cuando menos en parte, se desarrollaron simultáneamente; existe creencia de que los pliegues orientados hacia el norte son más jóvenes. Las fallas orientadas al noroeste, están truncadas por las fallas orientadas hacia el norte. Esto es principalmente evidente en 3.3′ N - 16.2′ W.

Todos los pliegues son simétricos. En la orientación N 50° W, los pliegues son recostados al suroeste (los planos axiales están inclinados hacia el noroeste). En la orientación norte, los pliegues están invertidos hacia el oeste. El buzamiento del pliegue principal, de orientación N 50° W, es sureste. Los pliegues norte-sur son doblemente buzantes.

Los pliegues de arrastre no son comunes en el área de Plomosas, excepto en la caliza de la Unidad 6, cerca de Mina Plomosas, en donde los planos axiales generalmente tienen un rumbo de N 50° W. Su mayor abundancia en y cerca de la mina, debe ser el resultado de las fallas de cabalgadura del área. En 4.6′ N - 14.1′ W existen dos juegos de pliegues de arrastre casi a ángulos rectos uno del otro.

INVERSIÓN EN LA SOFÍA

A primera vista no se sospecha que la montaña llamada La Sofía esté invertida pues parece ser un amplio pliegue anticlinal. McBride, Muehlberger, y el autor encontraron capas con estratificación graduada, marcas en la parte de abajo de los estratos (sole marks), diastratificación menor, y Lebensspuren, lo que indica que la montaña está invertida y que la cara superior de las capas es hacia el centro de La Sofía.

La gran sección invertida al noroeste de Placer de Guadalupe se encuentra al suroeste de la falla principal de la sierra, de la misma manera que el Cerro Enmedio y La Sofía están al suroeste de lo que puede ser la misma falla. La estructura regional está pues en armonía.

Una prueba convincente de la inversión viene a considerar las tres zonas litológicas en la SM 10. La zona intermedia contiene lutita de color morado claro, la cual está cubierta en La Sofía, pero está presente en 1.8' N · 16.25' W. La zona superior está compuesta de caliza. Si La Sofía no estuviese invertida, la zona superior de caliza debería haber sido erosionada en la cima de La Sofía; todo lo contrario, la cima de La Sofía está compuesta de caliza que subyace a lutita de color morado claro. La zona de caliza más joven está cubierta por la zona antigua intermedia que contiene lutita de color morado claro.

En el área situada al sur de La Sofía, la Unidad 5, más antigua, descansa sobre la Unidad 6 más joven. El contacto parece ser sedimentario más que un contacto de falla. En 1.2′ N - 16.4′ W el conglomerado que cubre la colina, es muy similar al conglomerado de la Unidad 5 (estrato 35 de la SM 8) que rodea el extremo sur de Cerro Enmedio (Lámina 3). Tal vez estos dos afloramientos de conglomerado fueron alguna vez un solo cuerpo continuo, pero ahora la conexión está erosionada y La Sofía debe estar invertida.

En 0.5' N - 16.4' W aflora una secuencia poco conglomerática con fragmentos de la "formación verde"; los clásicos son más pequeños y finalmente desaparecen hacia abajo de la sección en lugar de desaparecer hacia arriba, lo que sugiere que esta parte de la Unidad 6 está invertida.

La porción basal de la Unidad 6 en Cerro Enmedio (SM 6) tiene 270 m de espesor. Las zonas de amonitas 2, 3 y 4 están en el orden apropiado, estas capas no están invertidas. La zona de amonitas 3 o zona de Subplanites, está presente cerca del pie de La Sofía y parece ser continua con la zona de amonitas 3 de la SM 6. Si La Sofía no estuviera invertida, el espesor estratigráfico de la Unidad 6 de La Sofía debía ser menor de 300 m; todo lo contrario, dicho espesor en La Sofía se estima en más de 600 m. Debido a que La Sofía está invertida, parece tener significado el gran espesor estratigráfico.

FALLAS

En el área de Plomosas es difícil encontrar un plano de falla claro aunque varias de las fallas son obvias desde la distancia. Las relaciones regionales tienen que considerarse para determinar si las fallas son de gran ángulo o de poco ángulo.

Los fluidos mineralizantes probablemente ascendieron a lo largo de una falla en Mina Plomosas. Esta falla es apropiada para formular una opinión acerca de la inclinación. Cerca de la mina, la falla se extiende desde 4.1' N. 13.5' W hasta 6.8' N - 16.5' W y probablemente en el subsuelo en ambas direcciones. Debido a que el plano de falla está cubierto en la mayor parte de la distancia, el aspecto del afloramiento no ayuda para determinar su actitud. La única clave en el mapa es la presencia de un testigo estructural (Klippe) pequeño de la "formación verde" en 6.5' N · 16.5' W. Esto sugiere una falla de cabalgadura de ángulo poco inclinado. El tiro de la mina tiene de 210 m a 240 m de profundidad, los túneles se extienden en ángulo recto a la falla, a pesar de esto, los túneles se encuentran bajo el mármol inferior de la Unidad 6. La falla es muy inclinada al principio pero a poca distancia pierde su inclinación hasta tener menos de 15°. Esto puede ser solamente una falla de cabalgadura de poco ángulo. El hecho de que la "formación verde" no esté repetida y de que está muy plegada aún a 1.5 m de distancia de la falla, indica un desplazamiento horizontal en un ángulo pequeño.

El rumbo de las fallas tiene dos orientaciones generales que son subparalelas a la orientación de los pliegues. La cobijadura tiene la misma dirección que la inversión. La cobijadura principal es hacia el suroeste; las cobijaduras menores son hacia el oeste. Es imposible determinar el acortamiento de la corteza en la mayoría de las fallas. Falla principal.—La falla principal de la sierra (Lámina 3) se extiende a todo lo largo de ella, desde Placer de Guadalupe hasta Mina Plomosas y aun más allá en ambas direcciones. En la Lámina 1 la traza se extiende desde 7.2′ N · 18.3′ W hasta 2.9′ N · 16′ W. No existe seguridad de que sea una falla continua. El área más dudosa es la del potrero, entre Placer de Guadalupe y Mina Plomosas. El potrero debe cartografiarse en detalle para asegurar que se trata de una sola falla. Posiblemente la falla de Mina Plomosas y la falla de Cerro Enmedio (falla principal) se unan en una sola falla en el potrero aunque es poco probable.

Antes del fallamiento, las rocas ordovícicas más antiguas expuestas en el área de Mina Plomosas, se encontraban aproximadamente de 4,500 a 6,000 m bajo la cima de las rocas del Cretácico Superior que estaban en o cerca de la superficie. Para traer estas rocas ordovícicas a la superficie e invertirlas se requiere una erosión principal, plegamiento y fallamiento, que puede muy bien

incluir una falla de 16 km a 18 km de largo.

La siguiente secuencia de eventos se sugiere en el desarrollo de esta falla principal. Primero se desarrolló un anticlinal asimétrico (posiblemente un pliegue en abanico). Después, fue agrandándose gradualmente hasta un pliegue recostado. Finalmente, con acortamiento continuo de la corteza, el pliegue fue quebrado por una falla de cabalgadura. En Cerro Enmedio y en los afloramientos precarboníferos del noroeste de Placer de Guadalupe, las rocas más jóvenes se cobijaron sobre las rocas más antiguas, como se muestra en la sección AA' (Lámina 2). El tamaño del pliegue recostado en la sección estructural, es mayor que el tamaño verdadero de dicho pliegue porque AA' se construyó con un ángulo que forma 45° con la falla principal.

La inversión en La Sofía requiere un acortamiento mínimo de la corteza de 11 km y posiblemente hasta de 32 km, aunque se necesita cartografiar con

detalle al suroeste de Plomosas para determinar esta cifra.

ESTRUCTURA CENOZOICA

Ninguna falla en particular puede señalarse como falla normal terciaria, pero probablemente existan varias fallas normles menores en el área del mapa. La mejor evidencia de lo anterior es la inclinación de la Grava Conchos en 5.1' N - 13.6' W y en otros lugares a lo largo del camino de Picachos a Placer de Guadalupe.

No se encontraron fallas en los depósitos de terraza.

DIACLASAS

En la vecindad de 6.2' N - 17.2' W, se midieron muchas diaclasas en la parte superior de la arenisca de la Unidad 1, con la esperanza de que las diaclasas laramianas pudieran eliminarse y las diaclasas paleozoicas pudieran estudiarse independientemente. La complejidad del plegamiento y fallamiento parece ser muy grande para permitirlo. Las diaclasas no pueden atribuirse a los movimientos paleozoicos encontrados.

Las diaclasas observadas en el campo raramente son juegos de diaclasas compresionales a 60°. Generalmente, alguna dirección de las diaclasas puede ser preferencial en una localidad dada; lo que sugiere que las diaclasas se desarrollaron como fallas de tensión. Existen dos direcciones compresionales laramianas que complican aun más la interpretación. Las relaciones regionales son probablemente más útiles para interpretar la estructura que las diaclasas.

FOLIACION

Casi todas las rocas de las Unidades 1-6 están foliadas. La foliación es particularmente notoria en las unidades calizas y está casi ausente en el arrecife que es más competente y en las capas de arenisca. En 1.6' N - 16.1' W se cartografiaron las estructuras planares más prominentes y las diaclasas. Burrows (1909, p. 292) llamó pizarra a la Unidad 4 de 3.3' N - 14' W, la que está foliada más que estratificada.

BOUDINAGE

Los nódulos de pedernal de la Unidad 2, en el cañón situado en la SM 2, son alargados y están cortados por fracturas transversales rellenas de calcita. Pueden ser adecuadamente descritos como "boudins", aunque no son estrictamente producto del metamorfismo.

PROBLEMAS ESTRUCTURALES

Uno de los rasgos especiales del área de Plomosas, se encuentra en la Boquilla de Santo Domingo. La falla de cabalgadura orientada hacia el norte, que se extiende desde 3.7′ N·13.8′ W hasta 1.1′ N·14.9′ W parece ser continua y con un desplazamiento apreciable a través del Río Conchos. Lo extenso del afloramiento de la "formación verde", hace que la falla parezca discontinua a ambos lados del Conchos. Tal vez la "formación verde" esté tectónicamente "intrusionada", como si fuese pasta de dientes, en la región de la Boquilla, de tal manera que está fuera de secuencia. Esta intrusión puede haber tenido lugar a lo largo de una falla de tensión orientada este-oeste y que es similar a la que se encuentra en 3′ N·14.2′ W. Una zona de debilidad como ésta, puede ser la explicación del curso seguido por el Conchos a lo largo de los pliegues orientados hacia el norte. Posiblemente el afloramiento de la "formación verde" a lo largo del Río Conchos constituya una gran zona salbanda.

Existe un problema similar en 2.2' N - 14.2' W, a lo largo de la falla de cabalgadura orientada hacia el norte. La "formación verde" está fuera de secuencia porque no se encuentra bajo el arrecife. Aquí la "formación verde" está

fuertemente plegada.

A lo largo de la falla principal en 4.8' N - 16.8' W existe una zona de fallamiento de 48 m de ancho localizada al suroeste de la falla de cabalgadura.

En un sentido amplio, todos los afloramientos de la "formación verde" son salbanda. King y Adkins (1946, lám. 1) cartografiaron gran parte de la "formación verde" como una zona de salbanda.

En 2.2' N - 16.2' W la "formación verde" rodea a un afloramiento anómalo de la Unidad 4. Posiblemente éste fue un alto local en el que después de mucha

erosión, la "formación verde" se depositó en la Unidad 4.

La "formación verde" fue cabalgada sobre la Unidad 4 o bien este afloramiento de la Unidad 4 es un bloque exótico que quedó a lo largo de la falla de cabalgadura. Otros dos afloramientos pequeños de la Unidad 4 están presentes a lo largo de la falla de cabalgadura más al oeste Los braquiópodos y fusulínidos de estos tres afloramientos de la Unidad 4 indican que ahí falta la parte media superior de la Unidad 4.

En el afloramiento principal de la Unidad 4 en 2.2' N - 16.2' W el contacto entre la "formación verde" y la Unidad 4 es un contacto de falla. Debido a que todavía esto es dudoso, no se dibujó la falla. El afloramiento de la Unidad 4

cae más bien en la categoría de salbanda.

En 3.1' N·14.6' W aflora parte del arrecife el que parece estar estratigráficamente fuera de secuencia. Vistas desde el lado nororiental del arrecife las capas parecen estar inclinadas hacia el noreste, desde el lado suroccidental las capas parecen estar inclinadas hacia el suroeste. La inclinación noreste se debe a las diaclasas. El engrosamiento en 2.8' N·14.5' W de este afloramiento sugiere que puede ser un pequeño pedazo de arrecife más joven que la mayor parte del cuerpo arrecifal.

La posición actual de esta parte del arrecife es el resultado de un movimiento estructural posterior asociado con la falla de tensión en 5' N - 15.2' W.

En 6.2' N - 17.1' W existe un "anticlinal invertido". Gilluly (1960) sugirió que, la compresión orientada del noroeste al suroeste, formó el pliegue principal orientado hacia el noroeste; a continuación la compresión actuó en ángulo recto e invirtió el anticlinal para formar un sinclinal. Muehlberger (1962) prefiere describir esta estructura como un anticlinal con plano axial invertido.

Una falla de cabalgadura que es dudosa, se extiende desde 3.7' N - 15.9' W a 6.2' N - 15.9' W. Los afloramientos del arrecife en 4.6' N - 16.1' W y el cuerpo principal del arrecife parecen estar repetidos por fallamiento (Figura 17). Es poco probable la existencia de un sinclinal entre los dos afloramientos del arrecife porque la inclinación de las capas en la facies conglomerática de la Unidad 5 es muy variable; dichas capas están plegadas y no sugieren un sinclinal. Cerca de la SM 1 el espesor total de la Unidad 4 es aproximadamente de 100 m. El espesor verdadero es probablemente mayor de 250 m. La localización de la falla de la Unidad 4 es dudosa. La mineralización en Alfonsitos y en la mina México fue probablemente introducida a lo largo de una falla.

En 0.7' N · 14.1' W, la Unidad 4 y el arrecife, son facies semejantes. El aspecto del afloramiento no puede utilizarse para determinar la inclinación de

las capas.

No se muestran en el mapa las otras fallas menores. El afloramiento de la Unidad 6 en 6.9' N · 15.5' W está fallado; las amonitas colectadas de él, son difíciles de situar en la SM 10.

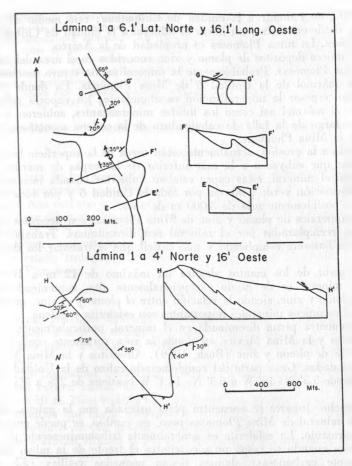


FIGURA 17.—Características estructurales de la localidad.

GEOLOGIA ECONOMICA

PLOMO Y CINC

Mina Plomosas es una mina de plomo y zinc, esta es la única industria. Las Plomosas significa "las localidades con plomo".

No se sabe con exactitud cuándo principiaron las primeras operaciones de explotación, probablemente fue a fines de 1800. El Ferrocarril de Kansas City y Oriente que va de la ciudad de Chihuahua a Ojinaga, estuvo en operación

desde 1909, de Falomir a la ciudad de Chihuahua; este medio de transporte es usado desde entonces para llevar el mineral a la ciudad de Chihuahua, para

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

su fundición. La mina Plomosas es propiedad de la Asarco.

Los únicos depósitos de plomo y zinc conocidos en el área del mapa están en la Mina Plomosas. Probablemente la mineralización estuvo asociada con las capas de mármol de la Unidad 6 de Mina Plomosas. En donde el mármol es de gran espesor la mineralización es abundante; los vapores calientes que formaron el mármol así como los fluidos mineralizantes, subjeron a la superficie a lo largo de la falla de cabalgadura de la cadena montañosa localizada frente de la Mina Plomosas.

Debido a la erosión, actualmente están cerca de la superficie las capas mineralizadas que subvacen a la más inferior de las capas de mármol. Cuando se depositó el mineral, estas capas estaban cubiertas cuando menos en parte, por la "formación verde", tal vez por toda la Unidad 6 y por toda la sección

cretácica; posiblemente más de 3,000 m de roca. Los minerales de plomo y zinc de Mina Plomosas son depósitos de manto. Las capas reemplazadas por el mineral son discontinuas. Trabajar este tipo de mina es bastante complicado y más difícil que el trabajar los depósitos de

El espesor de los mantos alcanza un máximo de 12 m a 16 m. Gran parte del mineral es de grado excepcionalmente alto, conteniendo de 25 a 30% de plomo y zinc, siendo la relación entre el plomo y el zinc, generalmente

de 2 a 1. Los únicos minerales importantes son esfalerita y galena.

Se encuentra pirita diseminada en el mineral, particularmente abundante en Alfonsitos y la Mina México en donde la roca raramente contiene más de 10% o 15% de plomo y zinc (Bush, 1959). Alfonsitos y la Mina México han sido abandonadas. Gran parte del conglomerado calizo de la Unidad 6, que se extiende desde 5.5' N · 15' W a 6.3' N · 16.1' W contiene de 2% a 3% de plomo

En muchos lugares se encuentra plata asociada con la galena. No existe plata en el mineral de Mina Plomosas pero, en cambio, se puede encontrar un poco de germanio. La esfalerita es generalmente triboluminescente por lo que destella luces cuando se raspa un pico contra el frente de la mina. Las capas son altamente carbonosas; algunas tienen pequeñas vetillas (2.5 mm de espesor) de carbón. Los vapores calientes tal vez removieron las impurezas carbonosas de las capas de mármol blanco convirtiendo químicamente el carbón en dióxido de carbono. Los efectos del metamorfismo de contacto, tales como alteración de algunas lutitas, puede observarse en la zona mineralizada.

En 1961 la producción de Mina Plomosas tuvo un promedio aproximado de 100 toneladas de mineral al día. El tonelaje y reservas probadas han ido aumentando poco a poco; existe aún la posibilidad de que todavía no se haya encontrado lo mejor del mineral.

Algunos depósitos de sulfuros en Gilman, Colorado, parecen ser genéticamente similares a los depósitos de Mina Plomosas. Lovering (1958, p. 689) dice que:

"El depósito de las menas de sulfuros fue seguido por una dolomitización hidrotermal de las rocas carbonatadas. Esta dolomitización parece haber tenido lugar a temperaturas que alcanzaron un máximo de 300° C y después declinaron hasta 230° C antes de que cesase la dolomitización. La textura y composición del mineral esfalerita, indica que se formó a una temperatura entre los 500° - 600° C. Otros minerales se depositaron sucesivamente a temperaturas más bajas, la mineralización hipogénica probablemente se cerró con temperaturas menores a los 150° C.

Se estima que la profundidad de formación de estos depósitos probablemente no

fue menor de 1,600 m ni más de 4,800 m."

En Mina Plomosas, ocurrió marmolización más que dolomitización.

COBRE

La mayoría de los prospectos son de cobre y son solamente depósitos pequeños, sin importancia económica, compuesta de roca con carbonato de cobre. El prospecto más cercano a Mina Plomosas se encuentra en 5.5' N - 15.3' W.

En el área del mapa los trabajos de exploración de cobre, están en la base de La Sofía en 2' N · 16.4' W. Se encuentra en ellos un poco de chalcopirita. Otra obra minera que está en 2.7' N - 16.3' W, fue visitada por el autor; esta obra se ha estado trabajando recientemente. El mineral se acarrea en burro hasta Mina Plomosas.

ORO

Tres áreas generales han sido exploradas por oro. El orden general de importancia son: Placer de Guadalupe, Santo Domingo en 2.8' N - 13.9' W, y el arrovo situado entre Picachos y Placer de Guadalupe a medio camino entre estos pueblos.

Placer de Guadalupe recibió este nombre por sus depósitos de oro. Al oeste de la ciudad existen varias obras abiertas en la grava; tienen una profundidad de 7 m a 10 m. Poco trabajo se ha hecho en busca de oro en el extremo de la intrusión sienítica que cruza el camino al sur de Placer de Guadalupe. Hoy en día, no se produce oro en ninguna de estas regiones.

La grava aluvial situada al suroeste de Santo Domingo, ha sido explorada

en épocas diferentes, pero no en los últimos 5 ó 10 años.

No se ha reportado oro aguas arriba del Conchos. La fuente de origen más probable parece ser la cadena montañosa con orientación norte que se encuentra al oeste de Santo Domingo. A lo largo de la falla de cabalgadura que corta al anticlinal, existe en 3.1' N - 14' W un pequeño tiro. Esta mina no se ha trabajado desde hace muchos años; en las ciudades cercanas se oyen rumores acerca de la presencia de oro en el área. El autor sólo encontró en las paredes del pequeño tiro rocas con un poco de hematita.

En el arroyo entre Picachos y Placer de Guadalupe se estuvo operando

durante 1958-59 un depósito de placer.

URANIO

El área entre la ciudad de Chihuahua y Ojinaga tiene posibilidades de uranio; algunos exploradores encontraron en 1958 minerales de uranio en la roca cretácica de la Sierra de Gómez, al este de Aldama. Un mineral radioactivo, de color amarillo claro, está asociado con pequeñas cantidades de malaquita. El prospecto se ha desarrollado desde entonces y ahora es una operación en grande.

Se ha reportado minerales de uranio en Placer de Guadalupe. El autor encontró en Placer de Guadalupe una roca mineralizada de color negro que probablemente contenga pechblenda pero nunca ha visto mineral de uranio en el área.

FIERRO

Se ha reportado una mina de fierro abandonada situada aproximadamente 10 km al sur de Mina Plomosas y conocida como Carrizalillo.

EDAD Y SECUENCIA DE LA MINERALIZACION

La evidencia sobre la edad de la mineralización es escasa. Tal vez la mineralización es de edad terciaria pues los flúidos mineralizantes parecen haber ascendido a lo largo de las fallas laramianas. El hecho de que el mineral está en roca jurásica elimina una edad paleozoica.

De acuerdo con Bateman (1950, p. 314) la secuencia ideal al alejarse de una roca madre intrusiva es "...5) oro, 6) cobre, 7) zinc (y un poco de plomo), 8) plomo..." Dependiendo de la erosión experimentada con anterioridad a la mineralización, esta parte de la secuencia puede estar correcta en el área del mapa. En Placer de Guadalupe el oro está intimamente asociado con la sienita.

EXPLORACION FUTURA

Con excepción de la mayor parte de los depósitos de oro, la mineralización está controlada por fallas. La exploración debe pues concentrarse cerca de las fallas, en los bloques cabalgados en donde se encuentran rocas favorables. Los fluidos mineralizantes que circularon a lo largo de la falla de cabalgadura de Plomosas, no depositaron el mineral en la "formación verde" suprayacente sino que lo depositaron en la caliza subyacente de la Unidad 6. Esta caliza parece haber sido una roca "huésped" común en el área.

El área más favorable para explorar por plomo y zinc está en un rectángulo rodeado por capas de mármol en el lado suroccidental, y que señala hacia 4.5' N · 13.5' W y en 6.8' N · 15.1' W en el lado nororiental. Esta área incluye la mina de Mina Plomosas. La mayor parte del área de este rectángulo está cubierta por la "formación verde" y depósitos aluviales, de tal manera que la estructura está cubierta por otras formaciones sedimentarias. Existen dos métodos posibles de exploración, los geofísicos y la perforación de diamante. Los métodos magnéticos y eléctricos son susceptibles de emplearse en Mina Plomosas para determinar la existencia de diversos tipos de roca además del mineral; los resultados sísmicos son dudosos en esos estratos. Si se encontrara con aparatos geofísicos un área favorable o con alguna perspectiva, tendría que ser probada con la barrena.

En general, el oro se concentra en la cresta de los pliegues donde se registra el gran fracturamiento y el aumento de permeabilidad. La actividad minera actual se localiza a lo largo de uno de estos pliegues orientado al noreste. Pueden existir en él área de exploración otros pliegues aun no descubiertos pero similares.

Otra consideración importante es el agua. Mientras más profunda sea la mina, mayor cantidad de agua deberá bombearse; la mina actual está solamente a 225 m bajo la superficie y el bombeo es su problema principal. Es mejor empezar la exploración más cerca de la cadena montañosa, en donde la Unidad 6 está más próxima a la superficie.

El autor se siente optimista respecto al área orientada de 6.2′ N·15.3′ W a 6.8′ N·14.4′ W, a lo largo de la cual existen afloramientos resistentes de la "formación verde". Esta resistencia puede ser el resultado del escape del gas de los flúidos mineralizantes calientes. Posiblemente esta orientación esté sobre la intersección de las fallas de cabalgadura que se extienden desde 4.3′ N·13.7′ W hacia 6.6′ N·16.3′ W y desde 3.8′ N·16.1′ W a 6′ N·15.9′ W. De ser así, este lugar es doblemente apropiado para buscar el mineral.

Los pequeños afloramientos resistentes que se encuentran en 5' N - 13.8' W pueden también haber resultado del escape del gas caliente. Los pequeños afloramientos de caliza marmolizada, en el arroyo de 4.9' N - 13.7' W, son indudablemente una parte de la "formación verde".

POSIBILIDADES PETROLERAS DE CHIHUAHUA

El norte y este de Chihuahua es terreno apropiado para la exploración petrolera. Tres pozos de prueba han sido perforados cerca de Cuchillo Parado. Uno de estos pozos encontró sal a poca profundidad. Varios pozos someros han sido perforados en la roca cretácica de Meoqui, al sur de la ciudad de Chihuahua. Como no existen otros pozos de prueba en Chihuahua, el estado potencial del aceite no ha sido probado.

El área entre Palomas y Samalayuca, más bien cerca de Palomas, parece favorable para la existencia de petróleo por varias razones. Las rocas están poco metamorfizadas; tienen mayor porosidad, y las cobijaduras son menos complicadas.

Dentro del Canal de Chihuahua la sección del Jurásico Superior contiene una cantidad considerable de lutita negra, la que puede ser una capa favorable para la acumulación de petróleo. Las capas de arenisca pueden ser productoras en los anticlinales, en tanto que los acuñamientos de la arenisca pueden ser productores en las márgenes del Canal.

Las rocas pérmicas pueden ser receptáculos potenciales. El depósito de roca marina probablemente continuó al sureste de Mina Plomosas, después de que cesó hacia el norte; si esto es cierto, hacia el sureste aumenta la probabilidad de que las capas sean productoras de aceite. Probablemente existan al sureste de Mina Plomosas algunos arrecifes que se extiendan hacia Ojinaga.

Las trampas estatigráficas en rocas pensilvánicas son buenas acumuladoras de aceite.

Como la lutita negra del Missisípico Superior es productora importante en el oeste de Texas, así la caliza negra del miembro superior de la Unidad 3 podría ser la mejor fuente de origen de la sección paleozoica de Plomosas. Las únicas rocas que dieron un poco de aceite fueron: la caliza negra de la Unidad 3, la caliza limosa con pedernal de la Unidad 3, y unas rocas del Devónico Inferior de la Unidad 2.

El aceite puede estar atrapado en la discordancia del Paleozoico Medio en el área de Placer de Guadalupe. El atrapamiento es más probable en sentido inverso a la inclinación de las capas (norte o noroeste) en donde las secciones hayan sido erosionadas. En el sentido de la inclinación de las capas (como en Cerro Enmedio) el hiatus es menor, y la lutita del Devónico Superior probablemente forma el límite superior de la migración de aceite. En el sentido inverso a la inclinación de las capas, sobre la discordancia, probablemente estén presentes zonas conglomeráticas locales que puedan servir como receptáculos.

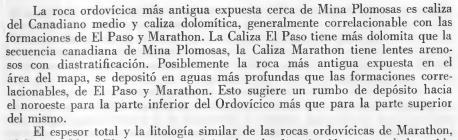
Aunque el autor dé menos importancia a las posibilidades precarboníferas, los cambios estratigráficos laterales y estructurales son rápidos, lo que será probado más adelante por la perforación.

HISTORIA GEOLOGICA REGIONAL

HISTORIA PRECAMBRICA

Los afloramientos de rocas precámbricas más cercanos a la región estudiada se encuentran en Van Horn y El Paso, Texas. Estas rocas son dominantemente caliza, cuarcita y esquisto con un 25% de material ígneo cerca de Van Horn (Flawn, 1962). En México, el afloramiento más cercano de rocas precámbricas conocido, se halla en Sonora. No puede asegurarse una edad precámbrica para los afloramientos de Samalayuca, de la Sierra de la Mojina, Chihuahua, y de la Sierra del Carmen y Potrero de la Mula, Coahuila.

Al proyectar las rocas del basamento de Van Horn y El Paso a Chihuahua, y al considerar la falta de material ígneo en el conglomerado pérmico de la Unidad 5, se puede concluir que la parte noreste de Chihuahua está principalmente subyacida por roca sedimentaria y no por roca metaígnea. Tal vez los fragmentos de roca ígnea más antigua de la Sierra de la Mojina, indiquen un cambio en el basamento de este lugar.


HISTORIA PALEOZOICA

El afloramiento de roca paleozoica en el área del mapa está tan aislado de otros afloramientos de roca paleozoica, particularmente precarbonífera, que es difícil interpretar la historia geológica sino se consideran otros afloramientos. La sección paleozoica completa más cercana está expuesta en Texas, en las Montañas Franklin de El Paso y en la Cuenca de Marathon, al sur de Marathon.

La arenisca Dagger Flat de Marathon y la arenisca Bliss de El Paso y del sur de Nuevo México, probablemente representan una unidad basal transgresiva. La edad de la Formación Dagger Flat se considera como del Cámbrico Tardío (King, 1937, p. 23); la última asignación de edad en esta unidad sugiere que su edad varía desde el Cámbrico Tardío al Ordovícico Temprano (Flower, 1958, p. 61). Tal vez la misma arenisca basal, tan ampliamente distribuida, se haya depositado en el área del mapa.

MAPA GEOLOGICO DE RECONOCIMIENTO, REGION DE PLACER DE GUADALUPE MINA PLOMOSAS, CHIHUAHUA, MEXICO

El espesor total y la litología similar de las rocas ordovícicas de Marathon, El Paso y Mina Plomosas son casi iguales; la depositación parece haber sido en aguas relativamente someras. Las capas de matatenas de la Lutita Woods Hollow (King, 1937, p. 34) sugieren una actividad tectónica cerca de Marathon durante este tiempo.

King (1937, p. 45) sugiere que los estratos ordovícicos de Marathon "...fueron casi todos depositados en aguas relativamente someras sobre el nivel base del oleaje". King cita como evidencia fracturas en el lodo, conglomerados aplastados producidos por acción del oleaje y fragmentos de fósiles pulidos. Ninguna de las anteriores características se observaron en Mina Plomosas. El depósito en Mina Plomosas probablemente tuvo lugar en aguas un poco menos someras que en Marathon.

King (1937, p. 44-45) manifiesta que la mayoría de los sedimentos ordovícicos vinieron del sureste y tuvieron contribuciones menores desde el noroeste. La fuente de origen de la arenisca de Mina Plomosas, probablemente estuvo en el norte. Kottlowski (1961) también sugiere una fuente de origen norte para los sedimentos ordovícicos de Nuevo México. La forma general del Geosinclinal Ouachita y el arreglo de la sedimentación en él, influyó en esta región durante el Ordovícico.

Los sedimentos del Ordovícico Tardío están representados en la Cuenca de Marathon por el Pedernal Maravillas. De acuerdo con Berry (1960, p. 33), Maravillas representa una acumulación lenta de sedimentos durante la mayor parte del Ordovícico Tardío. Estas rocas son más silícicas que las formaciones correlacionables de Minas Plomosas y El Paso. Tal vez esto represente el principio de la profundización del Geosinclinal Ouachita cerca de Marathon.

La historia silúrica y devónica de la región depende principalmente de la interpretación de la edad y origen de la Novaculita Caballos. Sus relaciones dentro de la Unidad 2, en el área del mapa, dan nueva luz al problema.

Prácticamente en todas las cartas de correlación, la Novaculita Caballos se considera como del Devónico (usualmente Devónico Tardío o Medio). La parte inferior de la Novaculita Caballos no tiene macrofósiles. Existe un conglomerado local (King, 1937, p. 42) entre Maravillas y Caballos y como no se han encontrado fósiles diagnósticos silúricos en dicho conglomerado fue interpretado como un rasgo erosional y por lo mismo, se ha considerado que faltan aquí las capas del Silúrico.

En el oeste de Texas, la roca silúrica-devónica es más silícica en la cuenca precarbonífera de Tabosa, localidad en donde, ahora se encuentra la Plataforma de la Cuenca Central (Galley, 1958, fig. 15). En el área del mapa la roca

silúrica y particularmente la devónica se vuelven silícicas hacia el sureste, lo que se interpreta como aproximación hacia el Geosinclinal Ouachita. El deslizamiento de la caliza intraclástica silúrica de la Unidad 2, es también generalmente hacia el sur. En Trans-Pecos, Texas, el porcentaje de pedernal en rocas del Silúrico-Devónico (Galley, 1958, fig. 15), aumenta desde el sur de la cuenca pérmica hacia la Cuenca de Marathon.

ESTUDIOS GEOLOGICOS EN EL ESTADO DE CHIHUAHUA

La roca silícica del Silúrico-Devónico de Mina Plomosas y Cuenca de Tabosa, parece formar un geosinclinal. Es probable que el área de Marathon, conocida como un área geosinclinal durante el Misisípico y el Pensilvánico, también lo fuera durante el Silúrico-Devónico. Lógicamente el Sistema Devónico no debe faltar en la cuenca. La Novaculita Caballos no contiene material clástico retrabajado. De esto se deduce que se encontraba lejana a cualquier área expuesta a la erosión.

¿Cómo puede explicarse el conglomerado local (King, 1937, p. 42) entre Maravillas y Caballos? Como los fragmentos son angulares, la torsión y el fracturamiento local de Maravillas puede haberlo brechado en algunas localidades.

En la SM 8, la caliza intraclástica tiene 25 m de espesor. Se supone que este espesor de roca, sin hiatus, representa el depósito silúrico del área. Sin embargo, es difícil encontrar fósiles silúricos diagnósticos en él.

Por estas razones el autor, al igual que Jones (1953, p. 13) sugiere que la parte inferior de la Caballos corresponde al Silúrico. Puede no haber discordancia entre las formaciones Maravillas y Caballos.

Adams y Weaver (1958, p. 396) reportaron que en la novaculita existe poco contenido de torio y una relación baja de torio a uranio. También señalaron (1958, p. 392-400) que estos valores son diferentes a los valores obtenidos en rocas volcánicas y que la lixiviación debe elevar la relación de torio a uranio. Park (1961, p. 58) agrega: "La recristalización de la roca volcánica, para dar lugar a la formación de novaculita, parece poco probable." La concentración biológica parece más factible. La biotita hexagonal en los estratos silúricos de Cerro Enmedio sugieren que hubo durante el Silúrico una actividad volcánica menor o distante.

El depósito silúrico de El Paso se efectuó en aguas más o menos someras; la parte superior del Silúrico falta debido a una interrupción en la sedimentación o erosión. El depósito silúrico del área del mapa, puede haberse efectuado en aguas profundas.

En el área del mapa, la historia devónica es más compleja que la historia silúrica. El depósito del Devónico Temprano al Devónico Medio fue continuo, ocurrió un intervalo de erosión desde el Devónico Medio tardío hasta el Devónico Tardío. El afloramiento de caliza del Devónico Inferior es la única roca de esta edad expuesta en el norte de México. Texas y Nuevo México (con excepción posible de la Novaculita Caballos). Siguiendo el intervalo de erosión en las rocas del Cerro Enmedio, el depósito continuó durante la mayor parte del Devónico Tardío posiblemente del Misisípico Temprano.

No fue sino hasta la última parte del Devónico Medio que el mar alcanzó nuevamente el área de El Paso. La formación devónica Canutillo y la parte superior del miembro inferior de la Unidad 3, tienen una composición similar lo que sugiere un depósito bajo condiciones semejantes. Ambas fueron probablemente depositadas en aguas someras; la lutita de varios colores de la parte superior del miembro inferior de la Unidad 3, puede no ser marina.

El depósito en la Cuenca de Marathon fue continuo durante el Devónico y Misisípico. Algunos conodontos encontrados en la base de la Formación Tesnus por Powell (1961) fueron identificados por Ellison y sugieren que las capas

basales pueden pertenecer a la parte más alta del Devónico.

El hiatus deposicional más importante dentro de la secuencia paleozoica de Mina Plomosas, está en el Misisípico. La interrupción en el registro fosilífero, se extiende desde Misisípico Tardío (Chesteriano). Cerca de Placer de Guadalupe, en donde se unen las dos discordancias, la interrupción abarca desde el Devónico Medio hasta el Misisípico Tardío. Probablemente el hiatus resulta principalmente de la suspensión en el depósito más que de la erosión toda vez que no hay ninguna indicación de la existencia de un relieve (más que de erosión) principal, tal como lo sería un material conglomerático suprayaciente. En contraste con esto están los 1,500 m de espesor de la Formación Tesnus en la Cuenca de Marathon, a escasos 200 km de distancia. La Tesnus es predominantemente misisípica. Cotera (1962) asegura que la parte basal de Tesnus se depositó en aguas de más de 200 m de profundidad y que parte de la Tesnus superior, se depositó en aguas más someras.

Los 100 m de espesor, de limolita y lutita pertenecientes a la Formación Helms, se depositaron en El Paso durante el Período Misisípico. La edad de Helms es dudosa aunque otros autores han colocado las interrupciones principales de la sedimentación encima y abajo de esta unidad dentro del Período Misisípico. La sedimentación en el área de El Paso, está también en contraste con la sedimentación de la Cuenca de Marathon. Probablemente al sur de la Cuenca de Marathon se levantó sobre el nivel del mar una gran masa terrestre que aportó el material clástico que formó los depósitos de "flysch" de la Tesnus. Flawn (1961) sugirió que esta masa terrestre puede haber permanecido bajo el nivel del mar durante el tiempo Caballos; aunque ya estaba presente el canal geosinclinal.

Los depósitos chesterianos de la Unidad 3 de Mina Plomosas, son delgados y probablemente representan una secuencia transgresiva basal. El color negro (N2) y la distribución de la caliza sugieren el depósito en lagunas y posiblemente en áreas inundadas y disecadas alternativamente en el curso de las mareas.

El depósito pensilvánico, así como el misisípico fue más rápido en la Cuenca de Marathon que el depósito pensilvánico de Mina Plomosas y El Paso. La secuencia de Marathon es dominantemente clástica e incluye la capa Haymond que contiene bloques del tamaño de una casa. McBride (1962) reconoció turbiditas dentro de la Formación Haymond así como en la Formación Tesnus. La actividad tectónica tuvo fuerte influencia en la sedimentación pensilvánica en la Cuenca de Marathon, pero no así en Mina Plomosas o El Paso.

La historia pérmica de Mina Plomosas es compleja. El depósito de caliza continuó desde el Pensilvánico hasta el Wolfcampiano (¿medio?). Siguió un levantamiento tectónico que produjo una fuerte acumulación de limolita, conglomerado y poca caliza. El tectonismo creó varias discordancias angulares locales y rápidos cambios laterales de facies.

Durante el Wolfcampiano tardío y Leonardiano temprano, se desarrolló en aguas someras el complejo arrecifal de Mina Plosmosas. La orientación del núcleo del arrecife es norte-noreste. Las relaciones generales de las facies y de los fósiles, sugieren que el depósito marino persistió hacia el sureste. La fuente de origen del conglomerado que está sobre el arrecife, se halla hacia el norte y noreste. El rumbo de depósito cambió drásticamente durante el Pérmico. La presencia de guijarros de metacuarcita, sugiere que existió durante el Pérmico un área alta hacia el norte y noreste de Mina Plomosas, de la que se erosionó la roca precámbrica. La actividad volcánica postwolfcampiana produjo un derrame de riolita del área de Mina Plomosas. En la sección pérmica de Las Delicias, Coahuila se encuentran intercalaciones de capas volcánicas de edad similar y existen intrusiones (¿paleozoicas?) en Aldama.

Es posible que la "formación verde" represente una facies cercana a la costa, perteneciente a un arrecife principal que se desarrolló por una regresión de la cuenca similar a la orientación del arrecife Capitán, en comparación con los arrecifes pérmicos más antiguos de la Cuenca de Delaware. Esta orientación congetural del arrecife en Chihuahua debe estar en el subsuelo y hacia el sureste de Mina Plomosas.

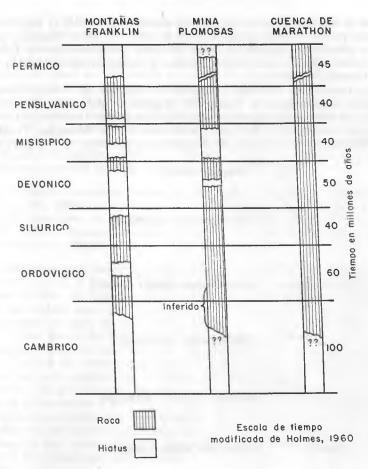
La facies conglomerática que puede ser parcialmente más antigua, equivalente, o más joven que la "formación verde", es de 300 a 600 m de espesor al suroeste del potrero; puede haber sido formada por abanicos aluviales coalescentes y puede ser marina o no marina.

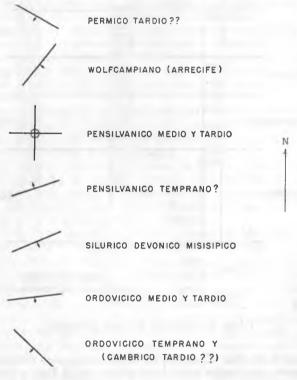
La única formación pérmica en el área de El Paso, es la Formación Hueco de edad wolfcampiana. Es considerablemente más lutítica que la Formación Magdalena subyacente, de edad pensilvánica; el medio ambiente general de depósito no cambió drásticamente desde el Pensilvánico. La facies Hueco difiere marcadamente de la Unidad 5 de Mina Plomosas.

En las Montañas Glass, al norte de la Cuenca de Marathon, King (1937, p. 93) reportó 1,500 a 2,100 m de roca marina pérmica. La sección es de caliza fosilífera, lutita y arenisca y difiere marcadamente de la facies de la Unidad 5 de Mina Plomosas. La roca clástica y silícica de las Montañas Glass, parece haber tenido una fuente de origen situada hacia el sur (King, p. 109). La fuente de origen del conglomerado de Mina Plomosas estuvo hacia el norte.

A estas generalidades concernientes a la historia paleozoica debe agregarse que en la sección de Mina Plomosas no ocurren discordancias (por ejemplo, entre el Ordovícico y Silúrico). Las únicas discordancias están dentro de las rocas devónicas y misisípicas. Las discordancias angulares en el Pérmico, son inferidas y comprenden períodos de tiempo relativamente cortos.

Tal vez la sección de El Paso tiene más interrupciones en la sedimentación que la sección de Plomosas; la sección de Plomosas tuvo durante la Era Paleozoica más interrupción que la sedimentación de la sección de Marathon (Figura 18). Parece que desde El Paso a Mina Plomosas y Marathon respectivamente, el depósito tuvo lugar generalmente hacia la costa y en aguas más profundas. Esto es desde luego una generalidad que tiene muchas excepciones durante el tiempo paleozoico; este punto de vista es fundamental para la interpretación regional aquí presentada.




FIGURA 18.—Sucesión de rocas paleozoicas.

Los depósitos de Mina Plomosas, particularmente en el Silúrico y Devónico, son generalmente intermedios entre los depósitos de El Paso y los depósitos de la Cuenca de Marathon. Las rocas silúrico-devónicas similares a las expuestas en Mina Plomosas están probablemente presentes en el subsuelo de Texas,

Otro problema importante del paleozoico en México es que ocurrió con la "faja de Deformación Marathon" (King 1937, fig. 29) la cual ahora es llamada por Flawn Faja Estructural Ouachita. La interpretación del autor, derivada del espesor, facies y rumbo deposicional en Mina Plomosas, es que la Faja Estructural Ouachita se encuentra hacia el sur. Debido a que la fuente de origen del conglomerado y de la arenisca, se encontraba hacia el norte de Mina Plomosas

durante el tiempo paleozoico, el extremo noroeste o norte de la faja de pliegues Ouachita puede encontrarse hacia el sur o sureste de Mina Plomosas. La deformación estructural pérmica en Mina Plomosas probablemente no fue lo suficientemente intensa para producir pliegues y cabalgaduras similares a aquellas de la Cuenca de Marathon.

Los cambios en dirección del rumbo de depósito en el área abarcada por el mapa, se sumarizan en la Figura 19. El promedio del rumbo deposicional, es paralelo a la orientación propuesta de la Faja Estructural Ouachita en Chihuahua. El espesor estratigráfico de rocas paleozoicas en las Montañas Franklin, en Mina Plomosas y en la Cuenca de Marathon, se muestran en la Figura 20.

LAS FLECHAS INDICAN LA DIRECCION HACIA EL MAR FIGURA 19.—Rumbos de depósito de rocas paleozoicas.

HISTORIA MESOZOICA

La Unidad 5 no contiene capas rojas como los depósitos triásicos de Texas. Esta ausencia no prueba ciertamente que la Unidad 5 sea de edad pérmica, pero las relaciones regionales sugieren que sí lo es.

Durante el Triásico y la mayor parte del Jurásico estaba siendo erosionada el área de Mina Plomosas. Durante el tiempo del Jurásico Tardío, el mar entró en Chihuahua desde el sureste y cubrió mucho de la parte oriental de Chihuahua. Esta transgresión fue sin duda principalmente el resultado del plegamiento del Canal de Chihuahua a manera de geosinclinal. Solamente cinco áreas de afloramiento de rocas jurásicas son conocidas en Chihuahua y en Trans-Pecos Texas (Figura 21). El límite oriental del canal incipiente de Chihuahua está bien establecido; el límite occidental es vago. Autores anteriores (Arkell, 1956, fig. 88) han sugerido que el límite occidental del depósito jurásico se encontraba más hacia el oeste. La ausencia de rocas jurásicas en la Sierra de la Mojina (Humphrey, 1961, vía Díaz G., 1962) y en Aldama, sugiere que el límite occidental se halla al este de estas localidades.

No se observó evidencia directa de la Orogenia Nevadiana, la que Arkell (1956, p. 559) establece que es de edad kimeridgiana tardía. De cualquier manera, el desarrollo de un canal al este de Chihuahua, cuyos ejes estaban en ángulo recto al rumbo promedio de depósito del paleozoico, indica un cambio principal en la dirección de los esfuerzos orogénicos.

A juzgar por una correlación de las secciones medidas y zonas de amonitas, el depósito durante el Jurásico Tardío, probablemente empezó durante el Kimeridgiano en Placer de Guadalupe, y un poco más tarde en Mina Plomosas y La Sofía. Esto sugiere que en el Jurásico Tardío, los ejes del Canal de Chihuahua, se encontraban al oeste de Placer de Guadalupe. Los rasgos direccionales de La Sofía, indican que la fuente de origen se encontraba hacia el noroeste; el área de Plomosas estaba un poco más alta que el área de Placer durante el Jurásico Tardío; los ejes del canal se encontraban hacia el este de Mina Plomosas. En Aldama, la parte superior de la Formación Las Vigas, descansa sobre rocas paleozoicas. En la Sierra de La Mojina, rocas albianas pueden descansar sobre rocas premesozoicas. Esto sugiere que los ejes del Canal de Chihuahua se encontraban muy hacia el este de Aldama y de la Sierra de La Mojina. La aproximación más probable es que los ejes del canal se encontraban al este de Mina Plomosas, lo cual puede probarse únicamente perforando. Durante el Jurásico, el Canal de Chihuahua fue asimétrico; sus ejes yacían más cerca del límite oriental.

Más de 600 ó 1,000 m de roca se depositaron durante el Kimeridgiano y Tithoniano en el área de Placer de Guadalupe. Esta sedimentación rápida resultó del plegamiento del canal y levantamiento de la fuente de origen. Algunas partes de la Unidad 6 se depositaron en aguas someras, pero la presencia de turbiditas en La Sofía y cerca de Placer de Guadalupe, sugieren que parte del depósito se produjo a gran profundidad.

El depósito de la caliza continuó durante el desarrollo de la parte superior de la Unidad 6. Esto indica que poco material silícico y clástico fue introducido. Existen varias explicaciones posibles; estaban ocurriendo menos levantamientos diferenciales, o bien, el clima fue más seco previniendo a los arroyos de acarrear tanto detritos, o ambos factores; o también el área de origen pudo haber

105

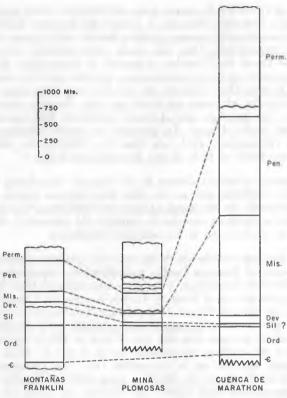


FIGURA 20.—Correlaciones regionales generalizadas.

sido transgredida. La última posibilidad parece menos probable, debido a la presencia de las capas rojas de la Formación Las Vigas suprayacentes.

No se encontró yeso en la Unidad 6 del área del mapa, pero cantidad considerable de yeso se encuentra en la parte oriental de Chihuahua, en las formaciones cretácicas. Probablemente durante el Jurásico Tardío se desarrollaron cuencas evaporíticas locales. Esto puede ser particularmente cierto, cerca de los ejes del canal, al empezar el mar a transgredir.

En la Formación Las Vigas se produjo, probablemente, una secuencia regresiva, compuesta de capas rojas marinas y no marinas. En la roca cretácica suprayacente, la depositación calcárea continuó debido a que los mares cretácicos eran más amplios y habían cubierto las áreas cercanas.

En Chihuahua oriental o en Trans-Pecos, Texas, no existe evidencia de tectonismo laramiano durante el Mesozoico. La prueba de que el tectonismo laramiano tuvo lugar durante el Terciario en esta región, es débil, debido a que la roca de Cretácico Tardío se ha conservado en pocas áreas.

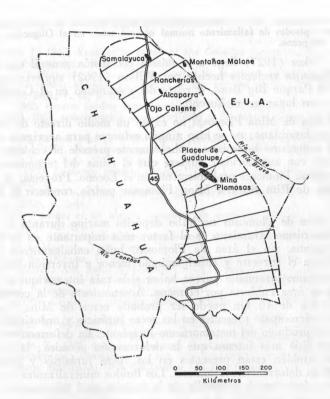


FIGURA 21.—Extensión de las rocas jurásicas en Chihuahua.

HISTORIA CENOZOICA

En el Parque Nacional Big Bend al sur de la Cuenca de Marathon, aflora una sección más o menos completa de rocas no tobáceas de edad Cretácico Tardío-Terciario temprana (Lonsddale et al., 1955, p. 44). La primera discordancia angular de esta sección ocurre entre formaciones del Eoceno medio (p. 45). No existe discordancia angular dentro del Cretácico Superior, Paleoceno y Eoceno inferior.

Frantzen (1958, p. 21) reporta que el sinclinal Colquitt del Condado de Jeff Davis:

...muestra evidencia de un disturbio compresional en el Oligoceno temprano o un poco más tarde... Sobre una base menos segura, la edad del plegamiento es anterior al Oligoceno medio...

El autor (1958, p. 42) a partir de las edades de vertebrados reportadas por Wilson, sugiere para el Condado de Rim Rock de Trans-Pecos, Texas que:

GEOLOGIA DEL AREA DE PLOMOSAS, CHIHUAHUA

... Prácticamente todo el volcanismo tuvo lugar durante la época oligocénica y el primer episodio de fallamiento normal ocurrió tarde en el Oligoceno o en el Mioceno temprano.

C. L. Baker (1927) llegó a la misma conclusión general que Frantzen y Bridges. Trabajos recientes hechos por Wilson (1962) sugieren que el volcanismo en el Parque Big Bend, y parte del volcanismo en el Condado de Rim Rock, tuvieron lugar en el Eoceno.

En el área de Mina Plomosas no existe un medio directo de asignar edad al tectonismo laramiano; no se hizo ningún esfuerzo para averiguar su edad. En general, el tectonismo laramiano probablemente precede al volcanismo. La evidencia citada con anterioridad, sugiere que el clima del tectonismo laramiano ocurrió en Mina Plomosas probablemente en el Eoceno. Proyectar el volcanismo del Condado de Rim Rock a Mina Plomosas podría conducir a dudosos resultados.

En el área de Plomosas no hubo depósito marino durante la Era Cenozoica. El tectonismo laramiano es el factor más importante en la historia cenozoica temprana. En el área de Plomosas, hubo cabalgamiento principal e inversión hacia el suroeste y cabalgamiento menor e inversión hacia el oeste.

El tectonismo laramiano parece haber sido más intenso que el tectonismo pérmico en el área cubierta por el mapa. Acortamiento de la corteza en magnitud del orden de 16 km puede ser probado cerca de Mina Plomosas. La sericita y el microespato presentes en las rocas jurásicas y ordovícicas, son principalmente un producto del metamorfismo incipiente. La deformación laramiana, parece haber sido más intensa que la deformación pérmica; la sericita y el microespato también están presentes en las rocas jurásicas y probablemente resultaron de la deformación laramiana. Los fluidos mineralizantes pueden haber tenido algún efecto en el desarrollo de la sericita y el microespato.

La actividad volcánica parece haber sido relativamente menor en el área del mapa. Cerca del camino entre Picachos y Placer de Guadalupe, aflora una toba verde, inclinada hacia el norte, indicando una inclinación post-deposicional. Probablemente otros depósitos tobáceos han desaparecido ya por la erosión. No se encontraron fallas normales en Mina Plomosas aunque indudablemente debe haber algunas pequeñas. En general, el fallamiento normal en el este de Chihuahua, y Trans-Pecos, Texas, es directamente proporcional a la actividad volcánica.

La mineralización y el desarrollo del mármol de Mina Plomosas fue subsecuente o se produjo tarde en la deformación laramiana; los fluidos mineralizantes han sido introducidos a lo largo de fallas. No se sabe si la mineralización ocurrió durante o después del volcanismo.

La erosión de los anticlinales y el depósito de aluvión en los valles intermontanos, siguió a la deformación laramiana. En algunas áreas de drenaje interno, el depósito aún continua. En el área de Plomosas, el Río Conchos ha sufrido múltiples disminuciones en su nivel de base. En respuesta a estos cambios, un sistema principal de depósito de terrazas se desarrolló en el Cenozoico tardío.

TRABAJOS CITADOS

ABERDEEN, ESTHER J., 1940, Radiolarian fauna of the Caballos formation, Marathon basin, Texas: Jour. Paleontology, v. 14, p. 127-139.

ADAMS, J. A. S. Y WEAVER, C. E., 1958, Thorium to uranium ratios as indicators of sedimentary processes; example of concept of geochemical facies: Am. Assoc. Petroleum Geologist Bull., v. 42, p. 387-430.

ADKINS, W. S., 1962, reporte inédito mencionado por Keith Young.

Anderson, J. Earl, 1961, comunicación oral, candidato al Doctorado, Dept., de Geol., Univ.

ARKELL, W. J., 1956, Jurasic geology of the world: London, Oliver and Boyd Ltd., p. 806. BAKER, CHARLES L., 1927, Exploratory geology of a part of south western Trans-Pecos Texas: Univ. Texas Bull. 2745, 70 p.

BATEMAN, ALAN, 1950, Economic mineral deposits: New York, John Wiley and Son, Inc.,

2nd edition, 916 p.

Berry, W. B. N., 1960, Graptolite faunas of the Marathon region, West Texas: Univ.

Texas Bull. 6005, p. 1-44.

Böse, Emil, 1923, Vestiges of an ancient continent in northeast Mexico: Am. Jour. Sci., 5th Ser., v. 6, p. 127-136.

BRIDGES, LUTHER W., 1958, Revised Cenozoic history of Rim Rock country, Trans-Pecos Texas: Tesis de Maestría, Univ. Texas, 74 p.

BRIDGES, LUTHER W., DEFORD, R. K., 1961, Pre-Carboniferous Paleozoic rocks in central Chihuahua, Mexico: Am. Assoc. Petroleum Geologist Bull., v. 45, p. 98-104.

Burckhardt, Carl, 1910, Nuevos datos sobre el Jurásico y el Cretácico en México: Inst. Geol. México, Parergones, v. 3, no. 5, p. 281-301. Burrows, R. H., 1909, Geology of northern Mexico: Mining and Sci. Press, v. 99, no. 2562,

-, 1910, Geology of northern Mexico: Soc. Geol. Mexicana Bol., v. 7, p. 85-103. Bush, Charles Handman, 1959, comunicación oral, superintendente en Mina Plomosas, CLABAUGH, STEPHEN E., 1961, comunicación oral, Dept., de Geol., Univ. Texas.

Comisión Intersecretarial Coordinadora del Levantamiento de la Carta Geográfica DE LA REPÚBLICA MEXICANA, Hoja Chihuahua 13R-111, México, D. F. escala 1:500,000,

COOPER, G. ARTHUR, et al. 1942, Correlation of the Devonian sedimentary formations of North America: Geol. Soc. America Bull., v. 53, p. 1729-1794.

, 1960-61, mayo y junio, 1960 y abril, 1961, cartas, Museo Nacional de Estados

COTERA, AUGUSTUS, 1962, Petrology and petrography of the Tesnus Formation, trans-Pecos, Texas: Disertación doctoral, Univ. Texas (en preparación).

DE CSERNA, ZOLTAN, 1961, Tectonic Map of Mexico, scale, 1:2,500,000: publicado por Geol. Soc. America.

DEFORD, R. K., 1958, Cretaceous platform and geosyncline, Culberson and Hudspeth Counties, Texas, in Permian Basin Section: Soc. Econ. Paleontologists and Mineralogists, 1958, Libreto-guía, 90 p. -, 1959-62, comunicación oral, Dept. de Geol., Univ. Texas.

DÍAZ G., TEODORO, 1956, Generalidades sobre la geología del norte de México, p. 9-14, Ruta: Chihuahua, Chih., Placer de Guadalupe, Chih., en 20 Cong. Geol. Internal., Excur. A-13, p. 33-42.

-, 1962, Carta de marzo, Petróleos Mexicanos, Monterrey.

DIETRICH, J. W. 1954, Geology of Presidio-Ocotillo area, Presidio County, trans-Pecos, Texas: Tessi de Maestría, Univ. Texas, 83 p.

DUNBAR, C. O., Y RODGERS, JOHN, 1957, Principles of stratigraphy: New York, Wiley and Sons, Inc., 356 p.

Duncan, Helen, 1960, Cartas de marzo y noviembre, Museo Nacional de Estados Unidos. ELLISON, SAMUEL P., 1961, comunicación oral, Dept. de Geol., Univ. Texas.

FINKS, ROBERT M., 1962, Carta de abril, Dept. de Geol., Queens College, Flushing, N. Y. FLAWN, PETER T., Y MAXWELL, Ross A., 1958, Metamorphic rocks in the Sierra del Carmen, Coahuila, Mexico: Am. Assoc. Petroleum Geologists Bull., v. 42, p. 2245-2249. —, y Díaz G., Teodoro, 1959, Problems of Paleozoic tectonics in north-central and northeastern Mexico: Am. Assoc. Petroleum Geologists, Bull., v. 43, p. 224-230.

—, 1961-62, comunicación oral, Bureau of Economic Geol., Austin, Texas.

FLOWER, ROUSSEAU, 1958, Cambrian-Mississippian beds of southern New Mexico: Roswell

Geol. Soc. Guidebook, 11th Field Conf., p. 61-78.

Folk, Robert L., 1954, The distinction between grain size and mineral composition in sedimentary rock nomenclature: Jour. Geology, v. 62, p. 344-359.

-, 1956, The role of texture and composition in sandstone classification: Jour. Sed.

Petrology, v. 26, p. 166-171.

---, 1959, Practical classification of limestones: Am. Assoc. Petroleum Geologists Bull., v. 43, p. 1-38.

—, 1961a, Petrology of sedimentary rocks: Austin, Texas, Hemphill's Book Store, 154 p.

Frantzen, Dan R., 1958, Oligocene folding in Rim Rock country, trans-Pecos, Texas:

Tesis de Maestría, Univ. Texas, 45 p.

GALLEY, JOHN E., 1958, Oil and geology in the Permian Basin of Texas and New Mexico: in Habitat of Oil: Am. Assoc. Petroleum Geologists Symposium, p. 395-446.

GILLULY, JAMES L., 1960, comunicación oral, U. S. Geol. Survey, Denver, Colo. GODDARD, E. N.; TRASK, P. D., DEFORD, R. K.; ROVE, O. N.; SINGEWALD, J. T., JR.; ODERBECK, R. M.; 1951, Rock-color chart: distribuida por Geol. Soc. America, 2a. ed.

HOLMES, ARTHUR, 1960, A revised geological time-scale: Nature v. 187, p. 27-28. HUMPHREY, WILLIAM E., 1961, comunicación oral, V. Press., Foreign Exploration, Pan

American Oil Co., N.Y., N.Y.
IMLAY, RALPH W., 1943, Upper Jurassic ammonites from the Placer de Guadalupe district,
Chihuahua, Mexico: Jour. Paleontology, v. 17, 527-543.

INDANS, JULIJA, 1954, Eine Ammoniten fauna aus dem Untertithon der argentinischen Kordillere in Süd-Mendoza: Paleontographica, v. 105, pt. A, p. 96-131.

Jones, T. S., 1953, Stratigraphy of the Permian basin of west Texas: West Texas Geol. Soc. Pub. (1953) 57 p.

Soc. Pub. (1953) 57 p.

Kellum, Lewis B.; Imlay, Ralph, W.; Y Kane, William G., 1936, Evolution of the Coahuila Pennisula, Mexico: Geol. Soc. America Bull., v. 47, p. 969-1008.

King, P. B., 1937, Geology of the Marathon region, Texas: U. S. Geol. Survey Prof. Paper 187, 148 p.

King, P. B., y Flawn, P. T., 1953, Geology and mineral deposits of Pre-Cambrian rocks of the Van Horn area, Texas: Univ. Texas Bull. 5301, 218 p.

King, Robert E.; Dunbar, C. O.; Cloud, P. E., Jr.; Miller, A. K.; 1944, Geology and paleontology of the Permian area northwest of Las Delicias, southwestern Coahuila, Mexico: Geol. Soc. America Spec. Paper 52.

—, Y ADKINS W. S., 1946, Geology of a part of the lower Conchos valley, Chihuahua, Mexico: Geol. Soc. America Bull., v. 57, p. 275-294.

KOTTLOWSKI, FRANK E., 1961, Paleozoic and Mesozoic strata of south central and southwestern New Mexico: trabajo presentado en el symposium de El Paso.

KRYNINE, PAUL D., 1946, The tourmaline group in sediments: Jour. Geology, v. 54, p.

—, 1948, The megascopic study and field classification of sedimentary rocks: Jour. Geology, v. 56, p. 130-165.

LARSON, DONALD A., 1960-61, comunicación oral, Botany Dept., Univ. Texas.

Lonsdale, John T.; Maxwell, Ross A.; Wilson, John A.; Y Hazzard, R. T., 1955, Big Bend National Park, Texas: West Texas Geol. Soc., Libreto-Guía.

LOVERING, TOM, 1958, Temperatures and depth of formation of sulfide ore deposits at Gilman, Colorado: Econ. Geology, v. 53, p. 689-707.

MACGILLAVRY, H. J., 1961, comunicación oral, Geologisch Instituut, Amsterdam, Netherlands.

MAUBEUGE, PIERRE L., Y LAMBERT R., 1956, Sur quelques ammonites aaleniennes d'Argentine: Soc. Belge Geol., p. 620-624.

McBride, Earl. 1961-62, comunicación oral, Dept. de Geol., Univ. Texas.

MUEHLBERGER, WILLIAM R., 1962, comunicación oral. Dept. de Geol., Univ. Texas.

Newell, Norman D., et al., 1953, The Permian reef complex of the Guadalupe Mountains region, Texas and New Mexico; A study in paleoecology: San Francisco, W. H. Freeman and Co., 236, p., 32 lám.

, 1955, Depositional fabric in Permian reef limestones (Texas): Jour. Geology, v.

63, p. 301-309.

—, DÍAZ G., TEODORO; CORGAN, JAMES; Y KLING, STANLEY; 1956, Stratigraphic section near Placer de Guadalupe, Chihuahua, Mexico: reporte inédito.

OLIVER, WILLIAM A., JR., 1960, Carta de agosto a Otto Majewske y carta de octubre.

Museo Nacional de Estados Unidos.

Park, David Eugene, Jr., 1961, The origin of bedded silicates with particular reference to the Caballos and Arkansas novaculite formations: Disertación doctoral, Rice Univ. 82 p.

POWELL, J. DAN, 1961, comunicación oral, Continental Oil Co., Research, Denver, Colo. RAISZ, ERWIN, 1959, Landforms of Mexico map, scale 1:3.000,000: Cambridge, Mass.

REASSER, DONALD F., 1962, comunicación oral, candidato al Doctorado, Dept. de Geol... Univ. Texas.

REZAK, RICHARD, 1962, comunicación oral, Shell Development Co., Houston, Texas.

RIX, CECIL C., 1961, Carta de abril, Jersey Production Research Co., Tulsa, Oklahoma. Spath, L. F., 1950, A new Tithonian ammonoid fauna from Kurdistan northern Iraq: British Museum (Nat. Hist.) Geol. Bull., v. 1, p. 96-137, 5 pl.

STILL, JOHN THOMAS, 1946-47, Geology of Placer de Guadalupe area, 2 mapas en Archivos de Petróleos Mexicanos: inédito.

de retroieos mexicanos; inedito

STOVER, L. E., 1961, Carta escrita por Cecil Rix, Jersey Production Research Co., Tulsa, Oklahoma.

Sverdrup, H. U.; Johnson, Martin W.; y Fleming, Richard H.; 1942, The oceans their physics, chemistry, and general biology: New York, Prentice-Hall, Inc., 1087 p.

SWARTZ, C. K., et al., 1942, Correlation of the Silurian formations of North America: Geol. Soc. America Bull., v. 53, p. 533-538.

Toomey, Don, 1962, comunicación oral en carta de enero, Shell Development Co., Houston, Texas.

TWENHOFEL, W. H., et al., 1954, Correlation of the Ordovician formations of North America: Geol. Soc. America Bull. v. 65, p. 247-298.

Underwood, James R., 1962, Geology of the Eagle Mountains and vicinity, map and cross sections: Univ. Texas, publicación en prensa.

WILDE, GARNER, 1960-61, enero y octubre 1960 y cartas en octubre 1961, The Humble Oil and Refining Co., Midland, Texas.

WILSON, JAMES LEE, 1960, comunicación oral, Shell Development Co., Houston, Texas.

WILSON, JOHN A., 1962, comunicación oral, Geol. Dept., Univ. Texas. WILSON, MARK, 1961, comunicación oral, Shell Oil Co., Midland, Texas.

WINSTON, Don, 1961, comunicación oral, candidato al Doctorado, Dept. de Geol. Univ.

Yochelson, Ellis L., 1960, Cartas de marzo y noviembre, Museo Nacional de Estados Unidos.

Young, Keith, 1962, comunicación oral, Dept. de Geol., Univ. Texas.

Zeller, Robert A., Jr., 1958, Road log, Deming to the Big Hatchet Mountains via Wilna and Hachita, New Mexico: Roswell Geol. Soc. Guidebook, 11th Field Conf., p. 7-24.

DESCRIPCIÓN

ESPESOR EN METROS

Caliza (micrita) con hasta 10% de pedernal en algunos lentes, dura, el pedernal es más negro que en la Unidad 2 (SM 1): caliza gris medio (N5) que se intemperiza a gris obscuro (N3) estratos gruesos, abundantes crinoides grandes hasta de 2.5 cm de diámetro en los 60 cm basales, además colonias indescriptibles redondeadas (0.75 cm de diámetro) que parecen orgánicas; otras lentes crinoidales más altas, schuchertellido 1 braquiópodo 1-4-17; Buxtonia 1 1-4-35; microsienita máfica pequeña a 14 m, sobre 15 m la unidad es masiva, concreciones de sílica pequeñas (2.5 cm) no fosilíferas sobre los 15 m, forma la parte principal de la escarpa al NE del arroyo, la base está 32 sobre el camino a la mina México Caliza lutítica y lutita dura, gris obscuro (N3) que se intempeperiza a gris olivo claro (5Y6/1) con manchas pequeñas rojo pálido (10R6/2) en las partes lutíticas, estratos medios a delgados (2.5 a 30 cm), algunos objetos cortos (2.5 cm) delgados que parecen orgánicos en los planos de estratificación, Styliolina en un pedazo de canto rodado, Hindeodella, generalmente no resistente, pobremente expuesta formando un cambio lutítico distintivo encima del arroyo, de consideraciones regionales el contacto superior debe ser discordante, el contacto inferior representa un cambio agudo en litología y probablemente también es discordante UNIDAD 2 (Lámina 1) Caliza silícica (micrita) con pedernal y biomicrita, con braquiópodos, dura, la caliza es gris obscuro (N3) que se intemperiza a gris claro (N7): pedernal gris verdoso (5GY6/1) a gris olivo (5Y4/1) que se intemperiza a café amarillento obscuro (10YR4/2) con barniz del desierto, pedernal y material silícico regularmente pero continuamente estratificado (de 5 a 25 cm), aproximadamente 60% de unidad es sílice, en la parte media superior de la unidad el contenido de sílice es solamente 20%, braquiópodo no identificable (probablemente Acrospirifer) 1-2-10, lateralmente muchos braquiópodos y conodontos en el horizonte BA, forma el lecho del arroyo Caliza (micrita) dura, gris obscuro (N3) que se intemperiza a gris obscuro mediano (N4) a gris claro (N7) con bandas gris café claro (5YR6/1) a morado rojizo pálido (5RP6/2) hasta de 12.5 cm de ancho en los planos de estratificación, distintivamente de estratos medios (de 5 a 25 cm), capas menores de pedernal, braquiópodos abundantes repartidos por doquier, capas con corales favosítidos de 11 m hacia arriba (frecuentemente silicificados) corales corneos y fragmentos de crinoides raros; Atrypa 1 1-1-40, Favosites sp. 4 1-1-60, coral corneo favositoide no determinado 1-1-170, Levenea? 1 1-1-114, un poco más lutítica, con corales corneos dominando de 32 a 33 m, posiblemente Acrospirifers a 42 m, la dirección alargada de los spirifers tiende a estar alineada en la dirección N30° oeste??, la base

de la unidad se eligió arbitrariamente y no tiene una capa

marcadora

APENDICE SOBRE SECCIONES MEDIDAS

SM 1

Parte de la Unidad 2 y 4 (Lámina 1) y toda la Unidad 3 (Lámina 1). Sección medida de más antiguo a más joven, generalmente N 50° E, la sección cruza el arroyo que pasa por la mina México; 6.1' N · 16' W.

UNIDAD 4 (Lámina 1)

A medio camino entre 2 arroyos principales en un risco pequeño.

ESTRATO

DESCRIPCIÓN

ESPESOR EN METROS

Caliza (micrita) con hasta 1% de pedernal estratificado, duro, gris medio (N5) que se intemperiza a gris obscuro (N3) en la base pero a gris claro (N7) más arriba en la sección característicamente gris claro, masiva a de estratos gruesos (0.30-1.80 m), el pedernal basal bien estratificado, los pedernales más altos generalmente son negros, con forma de nódulos elongados de 17.5-30 cm de diámetro; los 2 m basales están llenos de corales caninoides solitarios, calcarenita crinoidal 7 m; Cavusgnathus, Prioniodus³ 1-6-24; probablemente corales solitarios (negro y blanco) del mismo largo (77.5-15 cm) que en los 1.75 m basales a 721 m, 0.30 m de lutita verde dura a 18 m, 0.60 m de lutita verde dura a 33 m, un Chaetetes a 23 m, superficie regular cavernosa con manchas de hematita que sugiere discordancia posible o cabalgadura a 33 m, sil de microsenita pobremente expuesta que reemplaza a lutita roja, de 36 a 40 m, capas de pedernal nodular con fusilínidos de 42 a 48 m, capa de 0.60 cm de Chaetetes, con Chaetetes hasta 38 cm de diámetro, total o parcialmente reemplazada por pedernal hasta 45 m, Fusulina sp., Fusulinella sp., Wedekindellina? sp., 1-6-140; Fusulina sp.,6 1-6-150; fusulínidos preservados en el pedernal solamente, cima de la sección en un sinclinal suave

18

Unidad 3 (Lámina 1)

ESTRATO

METROS

Parte en una colina al suroeste en donde la sección cruza el arroyo

Espesor parcial de Unidad 4 (Lámina 1)	48
Espesor total de Unidad 3 (Lámina 1)	46
Espesor parcial Unidad 2 (Lámina 1)	55
Espesor total de SM 1	149

SM 2

Toda la Unidad 2 (excepto el pedernal superior medido en la SM 1) y toda la Unidad 1. La sección fue medida de más antigua a más joven, generalmente S 55° W, en el cañón inmediato al noroeste del arroyo que pasa por la mina México; de 6.4' N · 16.3' W a 6.15' N · 17.05' W. Difícil de medir, los espesores de las unidades dentro de la Unidad 1 (Lámina 1) puede ser demasiado grande.

UNIDAD 2 (Lámina 1)

La Unidad 1 y la 2 (espesor total 5 m) de esta sección se midieron por error en una hoja de cobijadura y se omiten aquí, la Unidad 2 (omitida) es la misma capa de pedernal encontrada en la base de la Unidad 3 de esta sección medida. La SM 2 principia un poco más arriba en el lado sureste del cañón, debido a que el intervalo está cubierto cerca del piso del cañón.

DESCRIPCIÓN ESPESOR EN **ESTRATO** METROS

Caliza (micrita) con capas menores de pedernal, dura, gris obscuro medio (N4) que se intemperiza a gris medio (N5) con capas distintivas morado rojizo pálido (5RP6/2) de 0.7 cm de espesor en los planos de estratificación principalmente en la parte superior de la unidad. Dominantemente de estratos medios con algunas secciones masivas. Braquiópodos poco abundantes, corales localmente abundantes: únicamente corales córneos en los primeros 12 m, tendencia a ser masiva en los primeros 30 m; Icriodus 8 FW = 2.3.20; Icriodus⁸ EO = 2.3.40; Atrypal¹ 2.3.107; dos capas de pedernal de 8 cm a 33 m; una capa de pedernal de 5 cm a 51 m; cuatro capitas silícicas de 2.5 cm de 57 a 58 m; Levenea 1 2-3-198, 2% de pedernal estratificado por los 20 cm inferiores, grueso de 72-80 m; muy pocos corales de 75-105 m, Levenea 1 Atrypa 1 2-3-348, Levenea 1 2-3-354, Favosites 4 pequeños (de 2.5 a 7.5 cm), corales córneos raros a 107 m; 2% de pedernal estratificado, el pedernal es en capas silícicas, blanco y negro, dando la apariencia de una culebra de coral en el intemperismo de 117-126 m (buen marcador en el cañón), masas de favositoides grandes de 30 a 60 cm pero comprimidos en los planos de estratificación en 125 m; muchos Favosites de 30 a 60 cm de diámetro de 126 m hacia abajo, Levenea 1 2-3-440, pedernal a 134 m, Levenea 2.3.480, 1% de pedernal de 144-156 m, Levenea?1 2-3-530, calcarenita crinoidal a 160 m, muchos corales córneos y algunos corales favositoides en masas grande de 160-162 m, muchos corales y no braquiópodos de 162-174 m; Entelophyllum sp., Microplasma? sp., corales córneos indeterminados, Heliolites

DESCRIPCIÓN ESPESOR EN sp., Favosites sp., 2-3-570-580; briosaurio? a 171 m; Levenea EG = 2-3-610, Favosites más grandes (mayores de 0.60 cm de diámetro) a 185 m, pequeños corales córneos a 188 m, caliza poco intraclástica a 188 m. masiva de 188-192 m. sinclinal posible a 191 m; pobremente medido, con muchas juntas y mal estratificado de 191 a 221, (se asume que está repetido y se resta del espesor): Atrypa¹ y Gypidula¹ 2-3-720, Heliolites⁴ 2-3-730, caliza intraclástica prominente con intraclastos ovoidales de 10 a 12.5 cm de largo de 222-228 m; Panderodus, Scolopodus de Ord 37 = 2-3-775, caliza lutítica con material no describible, herrumbroso a 228 m, la caliza intemperiza a gris amarillento (5Y7/2), cambia de litología a 228 m, valle de cambio lutítico con pocos cambia de litologia a 226 m, valle de cambia littitico con pocos corales de 228-231 m; Atrypa¹ EI = 2-3-760; Kockelella? ³ de Ord 26 = 2-3-766; Hindoedella ³ de Ord 24 = 2-3-768; Panderodus,³ Scolopodus,³ Cordylodus ³ de Ord 23 = 2-3-769; caliza dolomítica masiva resistente de 231-238 m; Streptelasma,¹ Conotreta,¹ Spathognathodus ² EH = 2-3-722; Prioniodus, ³ Ambolodus, 8 Amorphognathus, 8 Keislognathus, 8 Cordylodus, 8 de Ord 5 = 2-3-787; la caliza intemperiza a naranja grisáceo (10YR7/4) de 236-237 m; Scolopodus, Oistodus, Microcoelodus, Belodus, Panderodus ⁸ Acodus ⁸ de Ord 1 = 2-3-791; Spathognathus ⁸ Panderodus, Cordylodus, Distacodus, Aphelognathus, Drepanodus de Ord 0 = 2-3-792; caliza con pedernal, 20% de caliza de pedernal de varios colores, negro en la base, gris verdoso y blanco cerca de la cima, el pedernal está crudamente estratificado y es nodular (de 2.5-20 cm de diámetro), diquestrato de microsenita máfico en el arroyo, braquiópodos pequeños, pero no hay corales desde 238-243 m; braquiópodo dalmanelido (Zygospira?), Hindeodella 2-3-805, Sowerbyella Rafinesquina 2-3-810, la base de la unidad está fuera del cañón en el extremo inferior de un anfiteatro

Restos de la SM 2 se midieron en el lado noroeste del arroyo en el lado noroeste del anfiteatro.

> 4 Caliza lutítica y lutita, se intemperiza generalmente a gris claro (N7) con un poco de gris amarillento (5Y7/2) manchas dolomíticas, algunas manchas rojizas cerca de la cima, 6 m de microsenita máfica 6 m bajo la cima, pendiente de lutita pobremente expuesta, no se encontraron fósiles

UNIDAD 1 (Lámina 1)

- Arenisca, dura excepto en el 1.20 m superior en el cual es un poco friable, gris rosado (5YR8/1) debido a manchas hematíticas, se intemperiza a gris olivo claro (5Y5/2), en la parte superior, la parte inferior se intemperiza de rojo grisáceo (5R5/2) a gris verdoso obscuro (5GY5/1) masiva, con venas de cuarzo de 7.5-12.5 cm de espesor
- Lutita arenosa y un poco de arenisca, dura, gris verdosa (5G6/1) se intemperiza a gris muy claro (N8) con algunas manchas de hematita, estratos delgados, se quiebra en fragmentos aplanados redondeados de 0.30 cm, más pobremente expuesta que la Unidad 4, algunos fragmentos de crinoides

STRATO	DESCRIPCIÓN	ESPESOR EN
7	Arenisca lutítica, dura, color rojo pálido (5R6/2) y olivo pálido (10Y6/2) se intemperiza a gris olivo claro (5Y5/2), barniz del desierto negro (N1), masiva a estratos gruesos no distintivos, probablemente lutítica y calcárea, mucho de barniz del desierto menos resistente que la Unidad 5, excepto en los 0.60 cm de esta cima, la unidad es parecida a la Unidad 6, lutita negra de 24-25 m	
8	Lutita con capitas de caliza lutítica, dura a suave, gris obscuro (N3) a gris olivo (10Y4/2) se intemperiza a gris amarillento con manchas herrumbrosas en algunos lugares (manchas dolomíticas), numerosos moluscos muy pequeños (0.3 cm) cerca de la cima; Phragmodus, Aphelognathus 2-8-3; algunos lentes crinoidales, capas de caliza cerca de la base, tienen ramas de briosuarios; Oistodus, Scolopodus, Amorphognathus, Cordylodus de AR 2-8-25??	
9	Caliza y caliza lutítica, dura a endurecida, caliza gris obscuro medio (N4) se intemperiza a manchamiento dolomítico café moderado (5YR4/4), a gris olivo claro (5Y6/2), manchas de hematita roja cerca de la base, caliza masiva a de estratos gruesos (3.4.5 m) caliza lutítica de estratos delgados, caliza lutítica con braquiópodos órtidos raros y poco preservados (Hebertella??); Phragmodus, Drepanodus, Cordylodus 2.9-10	
10	Caliza, un poco lutítica dentro de intervalos cortos cerca de la cima, dura, endurecida donde es lutítica, gris obscuro medio (N4) se intemperiza a rojo pálido (5R6/2), y con exposición más intensa tiene manchas café moderado, gris olivo claro (5Y6/2), dominantemente masiva con planos de estratificación no claros, estratos medios en las partes lutíticas; gasterópodos, cefalópodos, esponjas, los gasterópodos generalmente en las partes lutíticas, las esponjas en la caliza solamente: posiblemente fragmento de Maclurites en en 2-10-80, 0.60 m detrito crinoidal pequeño a 26 m, cefalópodo en determinado 2-10-90, cefalópodo en 2-10-130, Maclurites? sp. en 2-10-140, varias esponjas de 0.30 m parecidas a pequeñas lágrimas invertidas a 45 m; Maclurites en 2-10-160, caliza muy resistente en este intervalo; Scolopodus, soclecondonto 2-10-250; fragmento grande de concha indeterminada 2-10-290, estratos delgados, poco silícica de 89 a 90 m, Saffordophyllum en 2-10-3000, lutita de 90-91 m	
11	Caliza lutítica, estratos medios a gruesos, muy similar a la Unidad 10 excepto que es menos resistente, espojas ocasionales de 2.5 cm como en la Unidad 10	L
12	Lutita con algunas capas de arenisca y capillas de caliza, dura, lutita negra verdosa (5GY2/1), arenisca gris olivo (5Y4/1)? con muchas manchas de hematita en algunos lugares, estratos medios a delgados (2.5 a 5 cm), moderadamente resistente, la lutita es silícica y se quiebra en fragmentos aplastados; Scolopodus a 2-12-20; Hesperorthis? 2-12-30 (en la lutita)	3
13	Arenisca, dura a endurecida, se intemperiza de naranja grisáceo (10YR6/6) a café pálido (5YR5/2), estratos gruesos?, muy calcárea, moderadamente resistente, <i>Palliseria</i> ? muy abundante en planos de estratificación en la cima de la unidad. 0.30 m de aren	

ESTRATO	DESCRIPCIÓN	ESPESOR EN METROS
	nisca con cementante de sílice a 12 m, esponjas de 2.5 cm e la base	
14 (Caliza y caliza lutítica, dura, gris obscuro (N3) que se intemperiza a gris medio (N5) con naranja grisáceo (10YR6/4) mar chamiento dolomítico, estratos gruesos (de 30 a 90 cm) masiva un intervalo lutítico de 0.60 a 10 m, lleno de Palliseria en 1 parte superior particularmente, Lesuerilla 2-14-0 (solamente uespécimen fue encontrado); Drepanodus, Oistodus y microfósiles triangulares 2-14-10; pocos y pobremente preservado derechos (20 cm) cefalópodos, Eospongia 2-14-100; la base de la unidad está en la parte media de un anticlinal invertido	1- 1, a n n o- s, le
Lado NW del	anfiteatro	
Espesor parci	al de Unidad 2 (Lámina 1) (corregido)	239
Espesor total	de Unidad 1 (Lámina 1)	263
Espesor total	de SM 2	502
	9	
	SM 3	

Parte de la Unidad 6 (Lámina 1) incluyendo todo el conglomerado calizo basal. Sección medida de las capas más antiguas a las más jóvenes, generalmente N 45° E, aguas abajo en un arroyo; 5.9^{\prime} N \cdot 15.2′ W.

UNIDAD 6 (Lámina 1)

El arroyo disecta gravas cuaternarias no consolidadas.

ESTRATO	DESCRIPCIÓN	ESPESOR EN METROS
5	Mármol, duro, blanco (N9) con tonos gris claro (N7) cuand impuro, no cambia de color cuando se intemperiza, masivo per los planos originales de estratificación están parcialmente conservados, olor sulfuroso cuando se quiebra, brechiado, bloques de caliza no marmolizados hasta de 30 cm de largo están presente en los 3 metros superiores, un poco de travertino cubre al mán mol en el lecho del arroyo, forma acantilados resistentes	e s ·-
4	Lutita calcárea y un poco de caliza; dura, gris obscuro (N3) qu se intemperiza de gris medio (N5) a morado rojizo pálid (5RP6/2), más resistente y en estratos más gruesos que en l Unidad 3, olor muy sulfuroso cuando se quiebra, arenisca calcárea de 3 m de espesor a 24 m con capas muy delgadas (1.5 cm inmediatamente encima y abajo, los 6 m superiores con abundant mármol; SD 3-4-300 pertenece a unos de los contactos menore entre caliza y mármol.	o a i) e ess
3	Lutita, suave, negra (N1) a gris obscuro (N3) que se intemperiz a varios tonos de gris y morado pálido, estratos delgados (2 4 cm) con capas ocasionales limosas o arenosas hasta de 30 c de espesor, la parte inferior fracturada, la parte superior mu	a n

DESCRIPCIÓN

ESPESOR EN

ESTRATO	DESCRIPCIÓN	ESPESOR EN METROS
	calcárea, los planos de estratificación plegados en pequeños plie- gues de arrastre; una amonita no identificable pobremente con servada cerca de la base	37
	UNIDAD 6 conglomerado calizo (Lámina 1)	
2	Conglomerado calizo gradacional hacia arriba a caliza conglome rática, dura, matriz gris obscuro (N3) que se intemperiza a gris obscuro mediano (N4), los 4.5 m basales están compuestos de 70% de guijas, cantos y matatenas del arrecife pérmico subya cente, 30% de la matriz es gradacional hacia arriba a 95% de la matriz con cantos bien clasificados de 2 cm del arrecife subya cente, en algunos lugares el material conglomerático es 50% pedernal retrabajado predominantemente del tamaño de mata tenas, masivo y es gradacional hacia arriba a estratos gruesos (1.20-2.40 m) fragmentos subarredondeados más redondeado hacia arriba de la sección, a media sección empieza porosidad cavernosa (agujeros hasta de 20 cm de diámetro), se intemperiza a superficies irregulares, un poco de mineralización y venas de calcita en la parte superior, pelecípodos grandes que se vuelver numerosos a 50 m, algunos pelecípodos grandes a 6 m de la base, colonias grandes de corales de 63 a 69 m; pelecípodo grandes son numerosos de 82 a 90 m	
1	Conglomerado calizo, duro, dominantemente gris obscuro medic (N4) que se intemperiza a café palido (5YR5/2) y ocasional mente a gris claro (N7) generalmente estratos gruesos masivos 90% de guijas, cantos y matatenas compuestos de la caliza arrecifal de la Unidad 5 con un poco de caliza de la Unidad 4 (Lám. 1) y algunos fragmentos de limolita del tamañ de cantos pobremente clasificados, la dimensión más larga de lo cantos orientada N 30° W, el contacto inferior con el arrecifide la Unidad 5 es muy irregular sugiriendo relieve topográfico considerable, discordancia angular posible en la base	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Aguas arriba	del arroyo	
Espesor total	del conglomerado calizo de la Unidad 6	. 128
Espesor total	de la SM 3	. 293
	SM 4	
tiguas a las n	la Unidad 5 (Lámina 1). Sección medida de las capa nás jóvenes, generalmente S 40° W, sobre terreno plano de un arroyo hasta la orilla de la "formación verde";	, después,
	Unidad 5 (Lámina 1)	

"formación verde", terreno bajo.

ESTRATO	DESCRIPCION	METROS
4	Limolita, dura a endurecida, generalmente gris verdosa (5G6/1) pero también se intemperiza a gris amarillento (5Y7/2), estratificación no clara, estratos medios a delgados (10-45 cm)?, el mineral de color verde es clorita, tectónicamente perturbado siendo imposible de medir, probablemente esta unidad ("formación verde") es de 300 a 600 m de espesor aquí	- l -
3	Limolita, dura a endurecida, morado pálido (5P5/2) en fractura fresca e intemperizada, estratos delgados (2.5-20 cm), el cambio de color a la Unidad 2 subyacente y a la Unidad 4 suprayacente es gradacional (a través de un intervalo de 6 m), cristales muy pequeños de pirita, un poco de diastratificación a 54 m otras a 84 m, SD 4-3-283 tiene el material de tamaño de arena más grueso de la unidad, SD 4-3-400 es típica de la unidad 4-3-400 se examinó en busca de espora y polen con resultados negativos, la unidad se midió en un arroyo	o s s a l
2	Limolita, endurecida, negro verdoso (5GY2/1) cambiando gra dualmente a gris verdoso (5GY6/1) hacia arriba de la sección se intemperiza de olivo pálido (10Y6/2) a café amarillente moderado (10YR5/4) y ocasionalmente café rojizo obscur (10R3/4) con intemperismo prolongado, dominantemente en estratos delgados (2.5-7.5 cm) con capas ocasionales de 30 cm composición uniforme, se intemperiza fácilmente a fragmento en la base a fragmentos regulares más pequeños hacia arriba d la sección poco bandamiento Liesegang cerca de la cima, mu bien estratificado de 111 a 137 m	a, 0 0 5- 1, 0 e y
1	Conglomerado de cantos a matatenas que es gradacional haci arriba de la sección a arenisca, duro, el conglomerado tien manchas rojizas, la arenisca es gris claro mediano (N6) y s intemperiza a naranja grisáceo (10YR7/4) con pequeñas manchas herrumbrosas y barniz del desierto en algunos lugares estratos gruesos, el conglomerado es de cuarzo bien redondead con un poco de caliza, la unidad tiene un espesor errático posiblemente discordancia angular en la base pero como el arrecife subyacente es masivo esto no está determinado	e e e e e e e e e e e e e e e e e e e
Cima del ai Espesor tot	rrecife de la Unidad 5 (Lámina 1) al de SM 4	. 359
	SM 5	
Donto	le le Unided 5 (Lémine 1) indumende toda el amorife d	I. II · I I

Parte de la Unidad 5 (Lámina 1) incluyendo todo el arrecife de la Unidad 5. Sección medida de capas más antiguas a más jóvenes, generalmente N 75° E, hacia arriba del Cerro Nevado; 4.85′ N - 16.1′ W.

Arrecife de la UNIDAD 5 (Lámina 1)

Cima del Cerro Nevado

ESTRATO

ESTRATO

DESCRIPCIÓN

ESPESOR EN METROS

2 Caliza un poco dolomítica, dura gris obscuro medio (N4) que se intemperiza a gris oliva claro (5Y5/2) y gris amarillento

ESTF	RATO	DESCRIPCIÓN	ESPESOR EN METROS
		(5Y7/2) caracterizado por <i>Tubiphytes</i> de color amarillo grisáceo (5Y8/4) de 1.5 mm, casi totalmente masiva	94
		UNIDAD 5 (Lámina 1)	
	1	Limolita con algunas capas de caliza y un dique-estrato de cienita; limolita dura, gris obscuro (N3) que se intemperiza a gris verdoso (5GY6/1), con una cubierta herrumbrosa café claro (5YR5/6) que se desarrolla continuamente por intemperismo, la parte superior lutítica de la sección se intemperiza a gris azuloso claro (5B7/1) a morado rojizo pálido (5RP6/2), estratos delgados a medios (7.5-25 cm), intemperiza a una pendiente de lutita, se caracteriza por bolitas concresionarias (2.5-5 cm); capas de caliza (micrita) en estratos más gruesos (0.6-1.20 m), característicamente café pálido (5YR5/2) que se intemperiza a naranja amarillento (10YR6/6); dique-estrato de cienita de 2 m de espesor a 33 m, no resistente, matriz gris clara (N7) con fenocristales verde y negro que se intemperiza a café amarillento (10YR5/4); contacto basal con la caliza de la Unidad 4 (lámina 1) concordante pero abrupto, contacto superior discordante; Helicoprion en cantos rodados basales	
		ara del lado occidental del Cerro Nevado de la SM 5	141
		SM 6	
a más an	tigu	e las Unidades 5 y 6 (Lámina 1). Sección medida de capa as, generalmente N 50° W, encima de una línea de lomerí n arroyo, adyacentes y al SW de el; 3.2′ N - 16.2′ W.	s <i>jóvenes</i> os suaves
En	el e	xtremo más bajo de la línea de lomeríos.	
ESTE	RATO	DESCRIPCIÓN	ESPESOR EN METROS
	1	Lutita y capa de arenisca de 6 m, endurecida, la lutita es princi- palmente morado rojizo pálido (5RP6/2), la arenisca gris ama- rillento se intemperiza a café morado (5YR3/4); 3 capas de caliza de 10 cm con tubos de gusano de 1 cm de diámetro con forma de amonitas, el contacto superior con la "formación verde" es un contacto de cabalgadura	
	2	Caliza muy lutítica con capas ocasionales de caliza de 60 a 90 cm de espesor, más resistentes, endurecida gris obscuro medio (N4) a gris oliva (N7) que se intemperiza a oliva pálido (10Y6/2) o gris oliva claro (5Y5/2), capas de caliza se intemperizan a naranja amarillento (10YR6/6), generalmente estratos delgados (2.5-7.5 cm); Virgatosphinctes cf. desenplicatus (Waagen) de D 50 = 6-2-50; capa de arenisca de 90 cm con la cresta de las marcas de oleaje orientada N 35° W a 66 m; Virgatosphinctes chihuahuaensis (Imlay) UT 38338, Subplanites cf. S. Aff. S. reisi (Scheid) en Imlay UT 38341, D 350 = 6-2-350; capa concresionaria con cresiones grandes (7.5 a 15 cm) con forma y	

ESTRAT	DESCRIPCIÓN DESCRIPCIÓN	ESPESOR EN METROS		
	tamaño de papa a 130 m; dos capas de arenisca de 60 cm d 132 a 134 m, fragmentos negros de pelecípodos a 134 m, con tiene amonitas en intervalos regulares de 0-125 m, amonitas de 125-171	e i-		
3	Arenisca, dura, gris obscuro medio (N4) que se intemperiza café amarillento (10YR6/2), estratos medios (5-25 cm), mu resistente			
4	Arenisca lutítica gradacional a lutita, la arenisca está endurecid la lutita es suave, gris obscuro (N3) que se intemperiza a na ranja grisáceo (10YR7/4), la lutita es quebradiza, capa de arenisca calcárea de 4.5 m con amonitas pobremente conservada de 19.5 a 24 m, pequeños caracoles (0.5 cm) muy abundante en 19.5 m; Pseudolissocercas? sp. de D 700 = 6.4-150; gene ralmente contiene amonitas y particularmente de 60 a 76.5 n P. sp. de D 800 = 6.4-250, UT 38339; el tipo de contact entre esta unidad y los 3 metros subyacentes de conglomerad calizo es difícil de determinar, el cambio de lutita un poc	1- 2- 3- 3- 3- 3- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-		
	arenosa a conglomerado calizo es abrupto, las relaciones regiona les sugieren discordancia angular	a-		
	Unidad 5 (Lámina 1)			
5	Conglomerado calizo, duro, matriz gris medio (N5) que se inter periza a gris oliva claro (5Y4/1), con barniz del desierto negi en los cantos y matatenas de arenisca, masivo, se engrosa a m de 300 m hacia el SW se adelgaza a 0 m hacia el NE	ro ás		
base de C Espesor pa	En el extremo más alto de la línea baja de lomeríos que está en l base de Cerro Enmedio. Espesor parcial de la Unidad 6 (Lámina 1)			
	SM 7			
la Unidad generalme	de la Unidad 6 (Lámina 1) incluyendo el conglomerado 6 (Lámina 1). Sección media de capas más antiguas a mate N 60° E, del extremo del arrecife de la Unidad 5 (Láción verde"; 4.15′ N - 13.8′ W.	ás jóvenes,		
	UNIDAD 6 (Lámina 1)			
Conta	acto de cabalgadura entre la "formación verde" y la Unid	lad 6 (Lá-		
ESTRA	TO DESCRIPCIÓN	ESPESOR EN		
7	Caliza lutítica, dura, gris obscuro (N3), pobremente expues contacto de cabalgadura con la "formación verde" generalmen cubierto	ite		
6	Mármol. duro, blanco (N9), que se intemperiza a naranja grisác (10YR7/4), olor sulfuroso no tan fuerte como en SM 3, bloqu			

ES	TRATO	DESCRIPCIÓN	ESPESOR EN METROS
		brechiados en la parte superior están completamente reempla- zados por mármol	3
	5	Lutita y caliza lutítica, moderadamente resistente a suave, la lutita es gris obscuro (N3) y se intemperiza a morado rojizo pálido (5RP6/2), la caliza lutítica es gris obscuro medio (N4), la lutita en estratos delgados de caliza lutítica en estratos medios, los 8 m basales forman una pendiente del lechado pobremente expuesta en valles de 8-32 m, algunas concresiones de fierro de 15-50 cm de diámetro y pequeños pelecípodos (0.5 cm) son comunes de 58-61 m	
	4	Arenisca y un poco de lutita, dura, gris claro (N7) a gris oliva claro (5Y6/1) que se intemperiza a gris claro (N7) y café pálido (5YR5/2), estratos medios 15.45 cm, la arenisca es más calcárea, amonitas ocasionales en los 3 m superiores, perforaciones de gusanos a 19 m, fragmentos de amonitas de 18 a 19.5 m, forma acantilados prominentes	21
	3	Lutita con muchas capas de caliza lutítica, la lutita es suave, la caliza lutítica endurecida, la lutita es negra y se intemperiza a morado rojizo pálido (5RP6/2), la caliza lutítica es gris medio (N5) y se intemperiza a café amarillento dorado (10YR5/4), la lutita en estratos muy delgados (0.5-2.5 cm), la caliza lutítica es en estratos medios (15-45 cm), muchas amonitas (la mayoría ya colectadas), los 9 pies basales de lutita son yesíferos, colección de amonitas BK de 9 a 24 m; Kossmatia sp. 7-7-3-90, UT 38553; K. rancheriaensis (Imlay) UT 38550, UT 38552, UT 38543; K. varicosta UT 38544; la unidad forma una escarpa orientada hacia el suroeste bajo de la escarpa de la arenisca de la Unidad 4	33
	2	Arenisca y lutita, la lutita es suave, la arenisca es más o menos resistente, la lutita es de varios colores, morado, gris y negro, la arenisca es gris obscuro medio (N4) a gris claro medio (N6) y se intemperiza a café amarillento obscuro (10YR4/2), los 8 metros superiores son de arenisca de estratos medios a gruesos	11
		Conglomerado calizo de la Unidad 6 (Lámina 1)	
	1	Conglomerado de cantos calizos, endurecido, gris oliva con manchas moradas y se intemperiza a café amarillento pálido (10YR6/2), estratos medios (7.5-20 cm), el material conglomerático es enteramente del arrecife subyacente de la unidad 5 (Lámina 1), el contacto basal es probablemente una discordancia angular pero el arrecife es demasiado masivo para estar seguro	1.50
Espesor	total	del conglomerado calizo de la Unidad 6 (Lámina 1)	. 1.50
Espesor	parc	tial de la Unidad 6 (Lámina 1)	. 137
Espesor	total	de la SM 7	. 138.50
		SM 8	
Too	las la	as Unidades 1, 2, 3 y 4 (Lámina 1) y parte de la Unida	d 5 (Lá-

mina 1). Sección medida de capas más antiguas a más jóvenes en tres partes

INSTITUTO DE GEOLOGIA, BOLETIN 74, PARTE 1

separadas en Cerro Enmedio. La Unidad 5 (Lámina 1) se midió generalmente S 10° E desde 3.4′ N - 16.8′ W a 3.05′ N - 16.75′ W. La Unidad 4 (Lámina 1) se midió generalmente hacia el oeste; 3.9′ N - 17.8′ W. Las Unidades 1, 2 y 3 (Lámina 1) se midieron generalmente S 50° W desde 4.4′ N - 17.4′ W hasta 4.05' N · 17.8' W.

En la base de un arroyo profundo

ESTRATO	DESCRIPCIÓN	ESPESOR EN METROS
35	Conglomerado de guijas a cantos, los clásticos varían de 5 a 60 cm, pero promedian 10 cm de diámetro, pobremente clasificado, duro, de varios colores con una matriz gris medio (N5), estratos gruesos (0.60-2.40 m) a masivo, 80% de material ígneo (flujo extrusivo de la Unidad 5) en la base siendo gradacional a 80% de caliza en la cima, la matriz es 10% del total de la roca, muy resistente a la erosión, la base es gradacional con la arenisca subyacente, el contacto superior está cubierto pero parece ser discordante, medido mientras se subía un arroyo profundo	
34	Arenisca, grano fino, dura, gris rosado (5YR8/1), gris muy claro (N8) se intemperiza del naranja grisáceo rosado (5YR7/2) a negro con aumento creciente de barniz del desierto, estratos me dios (7.5-37.5 cm) cementante de cuarzo, textura uniforme, dias tratificación menor, contacto superior gradacional	
33	Limolita, no resistente, pobremente expuesta, gris obscuro medic (N4) que se intemperiza a café claro (5YR5/6), hacia arriba en la sección se intemperiza a gris verdoso (5GY6/1), estratos delgados (2.5-12.5 cm), se rompen pequeños fragmentos, algunas capas arenosas cerca de la cima	1 6
32	Conglomerado y arenisca, duro, gris, oliva claro (5Y6/1) se in temperiza a café claro (5YR5/6), guijas del flujo subyacente	. 11
31	Flujo de riolita (riolita extrusiva de la Unidad 5, Lámina 1) dura, gris medio (N5) con fenocristales blancos de feldespate se intemperiza a café claro (5YR5/6), manchas gri amarillento (5Y8/1), después del intemperismo los fenocristale de cuarzo son más notorios, probablemente un solo flujo, tex tura y composición muy uniformes, fenocristos de 1.5 mm	s s
30	Limolita con intercalaciones de caliza, moderadamente resistente gris oliva (5Y4/1), se intemperiza de café claro (5YR6/4), café grisáceo (5YR3/2), estratos medios 20-50 cm, la limolit se fractura en astillas, esta unidad está alterada por el flujo su prayacente desde 24 m hasta la cima	a a i-
29	Caliza con pedernal e intercalaciones de lutita, dura, el colo varía de gris oliva (5Y4/1) a gris obscuro medio (N4) a gris café (5YR4/1), se intemperiza generalmente a café amarillent (10YR6/2), con un poco de gris medio (N5) y café clar (5YR5/6), el pedernal gris oliva claro (5Y6/1), estratos grueso (0.60-1.20 m), el pedernal es nodular y muy irregular dand la impresión de madera petrificada en algunos lugares, la caliz tiene consistencia irregular intemperizándose frecuentemente e una masa de apariencia algal, algunos caracoles de 0.5 cren la base	s o o o s o a n

ESTRATO	DESCRIPCIÓN	ESPESOR EN METROS
28	Caliza, moderadamente resistente, gris obscuro (N3), que se intemperiza a gris medio moteado (N5) con pequeñas manchas (1 cm) de forma oval y color gris obscuro (N3) estratos medios (10.25 cm) negro grisáceo (N2), pedernal cerca de la cima "caracoles moderadamente enrollados conocidos en depósitos de aguas marinas y dulces" (tamaño de 1 cm 8-28-62)	5 \$, S
27	Arenisca que es gradacional hacia arriba a limolita, pobremento expuesta	e
26	Caliza conglomerática y conglomerado, las guijas alcanzan 8 cm pero promedian 2.5 cm de diámetro, moderadamente resistente generalmente gris medio (N5) que se intemperiza a café amari llento pálido (10YR6/2), generalmente masiva pero en estrato gruesos (0.30 · 1.20 m) la arenisca y limolita 80%, pedernal 10% caliza 10% sin material ígneo; conglomeráticas de la cima, 60% de caliza en la base gradacional a matriz calcárea de 10% a medis sección, matriz arenosa en la cima, una guija de 8 cm del arrecife de la Unidad 5 (Lámina 1) a 15 m, posible discordancia angula en la base	s s s o a e e
25	Lutita limosa, muy suave, generalmente gris claro pobremente expuesta formando valles	
24	Caliza con pocas capas de pedernal, dura, gris obscuro medio (N4 que se intemperiza a gris medio (N5), cerca de la base banda morado pálido de 6 mm, pedernal gris oliva (5Y6/1) que s intemperiza a gris claro (N7) con herrumbre, estratos delgado a medios cerca de la base a masivo cerca de la cima, puede ser e equivalente lateral del arrecife de la Unidad 5 (Lámina 1) late ralmente es lenticular, detrito del tamaño de arena a canto en l base, no se encontraron fósiles	s e s s dl
23	Limolita y lutita, moderadamente resistente pero menos que la Uni dad 21, dominantemente gris medio (N5) que se intemperiz a café amarillento moderado (10YR6/4), lateralmente un poco d intemperismo rosado, estratos delgados, numerosas concresione (1 cm)	a e es
22	Caliza limosa (micrita) y un poco de lutita, moderadamente resistente, gris obscuro medio (N4) que se intemperiza a gris olivelaro (5Y6/1) y raramente a café amarillento moderad (10YR5/4), estratos medios (10 a 25 cm) algunos corales tallos de crinoides, varios gasterópodos grandes y amonoide ocasionales no identificables, se intemperiza en pedazos grande redondeados	a o y es
21	Limolita y lutita, moderadamente resistente a suave, varios colore variando del gris medio (N5) a café amarillento pálid (10YR6/2) a morado rojo grisáceo (5RP4/2), se intemperiz respectivamente a gris muy claro (N8) a café amarillento moderado (10YR5/4) a morado rojo pálido (5RP6/2), generalment estratos delgados (2.5-10 cm) las capas café amarillento pálid varían de 0.30-0.90 m de espesor, algunas bolitas concresionaria (2.5-5 cm de diámetro) del mismo material, sin fósiles, much de la lutita es quebradiza, el contacto basal con la Unidad 4 dabrupto, esta unidad se midió en una pendiente de 20°	s, lo ca e- te do as aa es

UNIDAD 4 (Lámina 1)

Estrato 20 = Unidad 4 (Lámina 1) fue medido en la cresta de Cerro Enmedio, en un perfil no contiguo con las unidades tanto de arriba como de abajo (ver Lámina 1).

ESTRATO

DESCRIPCIÓN

ESPESOR EN METROS

20 Caliza (micrita y biomicrita), dura, gris obscuro medio (N4) se intemperiza a gris medio (N5) en la base siendo gradacional hacia arriba a gris claro medio (N6) que se intemperiza a gris claro (N7), muy pocas manchas rojas o amarillentas en comparación con la caliza más antigua y menos pura de las Unidades 1 y 2 (Lámina 1), masiva a estratos gruesos (0.30-1.80 m), poco pedernal; contiene fusulínidos en intervalos regulares, franjas de algas (Ivanovia?) más o menos abundante, crinoides en algunas capas, braquiópodos escasos; el contacto basal es gradacional, el capas, braquiopodos escasos; el contacto basal es gradacional, el contacto superior es abrupto; Fusulina sp., Fusulinal sp., Wedekindellina cf., W. matura 8 8-20-50; Fusulina sp., Wedekindellina sp. 8-20-61; Schuchertella? o Derbya 8-20-100; pequeños fósiles parecidos a rodillos (3 mm de largo) parecidos a Stylilina a 31 m; Fusulina cf. F. euryteines, Fusulina sp., Wedekindellina sp.5 8-20-106; pedernal nodular vagamente estratificado de 33-40 m, fusulínidos solamente en el pedernal basal; Chaetetes en capas con algunos individuos hasta de 1 m de diámetro de 33-38 m; schuchertella o Derbya y fragmentos de un productido 1 8-20-150, tallos de crinoides y pequeñas láminas de algas (Ivanovia?) a 47 m. corales córneos grandes de 5 a 8 cm de diámetro (no Chaetetes) a 50 m; Fusulina cf. F. distenta,⁵ cm de diametro (no Chaetetes) a 50 m; Fusulina ci. F. distenta, Wedekindellina euthycenta, W. sp. 8-20-188; Fusulina sp. 8-20-206; láminas de algas (Ivanovia?) pequeños corales córneos prominentes a 83 m; Hustedia, Clethyridina, Schuchertella? 8-20-279; Idiognathodus delicatus, Gnathodus roundyi, Streptonathodus, Ozarkodina, Spathognathodus, Phragmodus, Hindeodella 8-20-280; Ideognathodus FH = 8-20-300? Antiquatonia sp. 18-20-300. Spathognathodus 8-20-325; Fusulina spp. 8-20-354, schuchertelidos a 110 m, 5% de pedernal de 110-112 m, sección gris obscuro N3) con pequeñas rayas morado claro de 117-120 m; "Wede-kindellina" spp. 8-20-422; sección alterada con manchas café amarillento moderado (10YR5/4) sugestiva de mineralización desde 150 m hasta la cima; láminas de algas grandes (Ivanovia?) a 154 m y otra vez a 175 m, láminas de algas (Ivanovia?) a 180 m; Triticites cullomensis ⁶ T. spp. ⁶ 8-20-612; Schmagerina spp. ⁶, Triticites cf. creekensis ⁶ T. sp. ⁵ 8-20-725; tallos grandes de crinoides a 224 m; Schmagerina sp. ⁵ Triticites spp. ⁵ 8-20-761; muchos tallos de crinoides y 2% de pedernal a 232 m, no hay crinoides en la cima como en Cerro Nevado y Placer de Guadalupe 247

UNIDAD 3 (Lámina 1)

Cerca de la cresta de Cerro Enmedio

19 Caliza (micrita), moderadamente resistente pero se fractura fácilmente, gris negruzco (N2) que se intemperiza a gris obscuro medio (N4), estratos medios (20 cm) a masivo, un poco de

DESCRIPCIÓN

ESTRATO DESCRIPCIÓN ESPESOR EN METROS

pedernal nodulado, conchas delgadas de braquiópodos pobremente conservadas, pobremente expuesta, algunos interestratos de lutita morada pálido, Leiorhynchus, Spathognathodus, Hindeodella, Neoprioniodus, Cavusgnathus, Prioniodus, Metalonchodina 8-19-0; Glabrosingulum 8-19-15 (colectada 350 m al SE del arroyo), ostracodos silicificados 8-19-20 y 8-19-45; Chonetes 1 8-19-40 braquiópodos no identificables a 14-16 m

17 Lutita con capas delgadas de pedernal negro cerca de la base. suave, pobremente expuesta, gris claro (N7) que se intemperiza a gris muy claro (N8) en la base y morado rojizo pálido 5RP7/2) hacia arriba de la sección, pedernal negro bien estratificado (5-10 cm de espesor) de 3-4-5 m, la lutita en estratos delgados (2.5-12.5) un poco de microcienita máfica, Styliolina

es abundante en los planos de estratificación a 3 m, no hay otros fósiles, contacto basal concordante: contacto superior cubierto pero seguramente discordante basándose en consideraciones regionales

17 Caliza limosa, dura pero menos resistente que la unidad 16, gris obscuro medio (N4) a café grisáceo (5YR4/1) a morado rojizo grisaceo de la base a la cima respectivamente, se intemperiza de gris oliva claro (5Y6/1) a morado rojizo pálido (5RP6/2) similarmente de la base a la cima, estratos delgados (5-10 cm), poco pedernal; Acrospirifer, Meristella, Icriodus en fragmentos, y dos ostracodos 8-17-0?? (los braquiópodos y el conodonto pueden ser retrabajados de la Unidad 16); Icriodus latericrescens, Polignathus linguiformis 3 Spathognathodus sp. ER = 8-17-40; Orbiculoidea1 (localmente muy abundante), Icriodus,3 Hindeodella3 EV = 8-17-42; ostracodos silicificados a 13 m; se intemperiza en capas alternadas duras y suaves (5-10 cm), las capas más duras parecen pedernal pero no lo son; discordancia posible en la base representada por una capa de 5 cm de material silícico negro café

UNIDAD 2 (Lámina 1)

Caliza (micrita) y pedernal interestratificado, duro, el pedernal y caliza ambos gris obscuro (N3), la caliza intemperiza a gris medio (N5) con un poco de morado rojizo pálido en los planos de estratificación abajo de los 60 m, el pedernal intemperiza al café amarillento pálido (10YR6/2) y negro con barniz del desierto concentrado, estratos medios, abundantes braquiópodos, pocos corales excepto en los 6 m basales corales coloniales no más arriba de los 6 m basales, contacto basal gradacional; caliza intraclástica de 3-6 m; trilobite proetido y Atrypa 8-16-16; pedernal a 6 m, pedernal formando un ángulo de 45° con la estratificación (deslizamiento o plegamiento) de 8-9 m, caliza intraclástica de 10-11 m, 10% de pedernal con capas hasta de 8 cm de espesor de 13-15 m, Phacops sp. 8-16-50, Leptocoelia sp. 8-16-52, Camarotoechia? sp.1 8-16-60, pedernal a 27 m, esponja? a 30 m, caliza intraclásica de 32-33 m Rhipidomelloides sp. 8-16-120; Leptaena, 1 Skenidium?, 1 Isorthis, Levenea, Metaplasia (o Emanuella), 1 Spathognathodus' 8-16-121; Emanuella 8-16-126; pedernal a 42 m; Levenea sp., Ambocoelia? 8-16-146; Fenestrellina? a 55 m; Leptaena sp., Strophonella sp. (braquiópodo muy grande 13 cm de ancho) 8-16-182; capas de pedernal hasta 13 cm de ESTRATO

ESPESOR EN METROS

espesor de 55-57 m; Isorthis?1 rinconelido no identificable1 8-16-190; Emanuella sp. 8-16-200; capas de pedernal cada 1.80-2.40 desde 67 m hacia arriba, pequeña Leptaena a 72 m, la caliza se intemperiza a naranja grisáceo (10YR7/4) de 69 a 71 m, capas de pedernal hasta de 15 cm de espesor a 78 m; Leptocoelia, Emanuella 8-16-262; Leptocoelia 8-16-25; Emanuella 8-16-266; pedernal hasta 40% a 72 m, primer posible Acrospirifer a 83 m Leptocoelia sp. 8-16-285; acrospirifer definidos y todavía algunas leveneas, pero no hay Atrypas en 86 m; Leptocoelia sp. 8-16-306, primer Acrospiriter grande a los 95 m. Acrospirifer 8-16-318; conodonto no identificable 8-16-320; frente de un acantilado de pedernal muy resistente a 98 m; 80% de pedernal, gris obscuro de 98 a 99 m; Leptocoelia y fragmento de conodonto³ no identificable 8-16-332; lleno de acrospirifer de 105 a 151 m; pedernal de colores como la Novaculita Caballos gris amarillento (5Y8/1), capas de pedernal hasta de 15 cm de espesor de 108 a 109 m; pedernal más nodular a 110 m; acrospirifer continúa hacia arriba hasta el cambio abrupto en litología en 113 m; perdernal blancuzco también continúa hacia arriba hasta 113 m, posible discordancia en la cima 113

Caliza intraclástica, moderadamente resistente, la matriz y los clásticos gris obscuro (N3), la matriz se intemperiza a gris amarillento (5Y7/2), los clásticos se intemperizan a gris obscuro medio (N4), estratos delgados a medios (2.5 a 25 cm) los clásticos promedian 2.5 cm de largo pero alcanzan hasta 8 cm, los clásticos (80%) y la matriz (20%) tienen los mismos fósiles, la matriz tiene más material limoso y fragmentos quebrados de fósiles que los clásticos, corales córneos abundantes, Favosites y fragmentos de crinoides más o menos abundantes braquiópodos, Halysistes son raros y están presente sólo cerca de la base, cambio abrupto de micrita a caliza intraclástica en la base pero lateralmente el cambio es a diferentes niveles estratigráficos por lo que parece haber una discordancia basal; Gypidula EZ = 8-15-0; braquiópodo dalmanelido y Gypidula 8-15-1; corales córneos no determinados 8-15-2, Merista1 8-15-2; Halisites,4 Panderodus, Belodus,3 Isorthis?, Atrypa 8-15-3; Isorthis FA = 8-15-5; Gypidula grande 8-15-12, Atrypa, Gypidula?, Hindeodella Panderodus 8-15-13, Atrypa EY = 8-15-15; poco pedernal, muchos corales a 6 m; Coelospira aff. C. saffordi (Foerste), Atrypa grande, Ligonodina, Ozarkodina Spathognathodus, Hindeodella 8.15-30; Entelophyyllum sp., corales córneos no determinados 8-15-32; Isorthis sp., Panderodus Prinodus Lambdagnathus? 8-15-33; Lissatrypoidea decaturensis (Amsden), Panderodus 8-15-34; coral' ciatofiloide 8-15-38; Isorthis sp. sugestivo de I. arcuaria (Hall y Clarke), Lambdagnathus microfósiles triangulares 8-15-40; coral corneo no determinado 8-15-41; coral indeterminado 8·15·44; Favosites sp., Heliolites sp. 8·15·46; Isorthis sp. 8·15·53; Rhipidomella cf. R. hybrida (Sowerby) 8·15·58, tendencia a ser masiva a 18 m; Leptaena sp., Levenea, Gypidula Howellella sp., Composita pequeña, Camarotoechia pequeña (la diferencia en conservación resulta de la exposición al intemperismo versus no exposición al intemperismo) GD = 8.15.60; cambio a caliza relativamente no fosilifera con mucho menos material intraclástico a 22m, braquiópodo1 no determinado 8-15-75, leveneas a 22 m

ESTRATO		OR EN
14	Caliza (micrita) con capa de caliza arenosa de 25 cm en la base, dura volviéndose más suave hacia la cima, gris obscuro (N3) en la base gradacional a gris obscuro medio (N4) en la cima, la cima de la unidad se intemperiza a naranja grisáceo (10YR6/4), la base tiene poco cambio de color al intemperizarse, masiva a de estratos medios (7.5-15 cm), prominentes estilolitas en los buenos afloramientos, sin fósiles, poco pelecípodos posibles o braquiópodos a 6 m; Kockelella?, Spathognathodus, Kladogna	13
13	Caliza con pedernal, dura, gris obscuro (N3) que se intemperiza a gris obscuro medio (N4) con manchas café amarillento (10YR6/4), pedernal gris oliva claro (5Y6/1) a gris claro medio N6) intemperizándose blancuzco o verdoso pero principalmente café moderado (5YR4/4), masivo excepto por una capa de pedernal de 8 cm, pedernal 30%, Sowerbyella, Panderodus, Sociopodus, Belodus 8-13-5; fragmento de rinconelido, posiblemente Lepidosyclus, Panderodus, Oistodus, Scolopodus, Cordylodus 8-13-6	3
12	Caliza, moderadamente resistente, microcienita máfica intrusionada, micacia, verde, poco pedernal negro puede ser derivado de la microcienita, gris obscuro (N3) intemperizándose a gris claro medio (N6) con un poco de café amarillento moderado (10YR5/4) manchas dolomíticas en la parte basal, estratos medios (10-18 cm), un poco lutítico abajo de los 16 m; micrita pura sobre los 16 m; Sowerbyella, Zygospira, Diceromyonia, Conotreta?, Oniella?, Drepanodus, Periodon, Panderodus, Cordylodus, Belodus 8-12-53	23
	UNIDAD 1 (Lámina 1)	
11	Arenisca, muy resistente (composición cuarcítica), gris claro medio (N6) que se intemperiza a café amarillento pálido (10YR6/2), rojiza en algunos lugares, masiva excepto por una capa de lutita de 8 cm en la mitad, muchas venas de cuarzo blanco, forma la capa marcadora más prominente del Ordovícico	3
10	Lutita y caliza lutítica, como la unidad 8	14
9	Arenisca, dura moderadamente resistente, 2.3ϕ , blanca (N9) con manchas rojo moderado (5R5/4), se intemperiza a café variable y casi negro con barniz del desierto concentrado, textura azucarada, granos bien redondeados, estratos gruesos (0.30-1.20 m) usualmente forma acantilados prominentes aunque no es tan resistente como la unidad $11 \dots$	2
8	Lutita y caliza lutítica, no resistente, la lutita es negro grisáceo (N2) que se intemperiza a gris obscuro (N3) y a más claro, la caliza lutítica se intemperiza a café amarillento obscuro (10YR4/2), estratos delgados, lutita (1-2.5 cm), caliza lutítica hasta 30 cm, una caliza lutítica de 1.20 m con braquiópodos ortidos en la base; Amorphognathus (forma rara), Belodus, Oistodus, Ostrácodos 8-8-4; Cordylodus, Distacodus, Belodus, Amorphognatus, Panderodus, Microcoelodus, Drepanodus 8-8-41	23
Haw wa	decoloramiento en esta sección entre las unidades 7 y 9 nave	0000

Hay un desplazamiento en esta sección entre las unidades 7 y 8 para aprovechar mejores afloramientos (véase Lámina 1).

ESTRATO	DESCRIPCIÓN	ESPESOR EN METROS
7	Caliza un poco lutítica, dura, gris obscuro (N3) que se intemperiza a gris obscuro medio (N4) a gris medio (N5); irregular ralladura paralela a los planos de estratificación de color caf moderado (5YR4/4), ralladura rojo pálido (10R6/2) estrato delgados a gruesos (0.05-1.20 m) bajo los 15 m, tendencia masiva sobre los 15 m, esponjas de 2.5 cm, 2 ó 3 gasterópodo (maclurites??) o cefalópodos, Sflordophyllum² (13 cm) 8-7-45 los 60 cm de la cima son caliza café herrumbroso, cima de la unidad al norte del sendero que va a Cerro Enmedio	é s a s s
6	Caliza arenosa, un poco lutítica, moderadamente resistente gri olivo (5Y4/1) se intemperiza a café amarillento obscuro (10Y) 4/2, estratos delgados (5-15 cm); superficies de estratificació corrugadas, irregulares, Orthanbonites 8-6-2; Distacodus, Drepo nodus, Scolopodus, Oistodus 8-6-4; pequeños fósiles parecidos esponjas	R n 1- a
5	Lutita, pobremente expuesta y reemplazada por microcienita ma fica verde, micasia, no resistente, el color de intemperismo vará de amarillo verdoso moderado (10Y7/4) a verde grisáce (5G5/2), color fresco no determinado estratos delgados (2.5-cm) poco pedernal, interestratos de caliza a 15 m, no se encon traron fósiles	a o 5
4	Caliza, similar a la unidad 1; Acontiodus, Drepanodus GC = 8-10??, esponjas de 2.5 cm estratos gruesos a masiva a 16 m, crest de la colina a 19 m; lutítica, muchas bandas delgadas amarill naranja y rojas paralelas a los planos de estratificación y pederna 21 m; primera Palliseria? a 54 m, con pedernal de 62 a 72 m abundantes paliseridos de 74 a 86 m, Palliseria 8-4-270	a lo al n,
3	Caliza marmolizada, suave y no resistente, gris muy claro (N8 que se intemperiza a gris amarillento (5Y7/2), estratos grueso a masiva, poco pedernal	os . 12
2	Dolomita, dura, un poco granular, gris claro (N7) que se intem periza a café amarillento pálido (10YR6/2) o naranja grisáce (10YR7/4), estratificación borrosa, un poco de pedernal estraticado, abudantes juntas pequeñas en varias direcciones, much rellenas con pedernal y/o sílice, probablemente resultado de fallamiento, la unidad tiene espesor variable	eo fi- is el
1	Caliza, dura, gris obscuro (N3) a gris claro medio (N6) usual mente (N4), se intemperiza a gris claro medio (N6) con manche naranja grisáceo (10YR7/4), manchas rojizas ocasionales (5R54) estratos medios (10-60 cm) comúnmente 15 cm, pequeña vetillas de pedernal con nódulos de 2.5 a 5 cm, posiblemente u poco dolomítica en algunos lugares, ocasionalmente un poc limolítica o lutítica, zonas de 2.5 a 5 cm de pequeños fra mentos de crinoides, forma colinas abruptas con echados ca verticales; primero pedernal discoidal, i. e. en su dimensió mayor en los planos de estratificación a 26 m; hasta 25% de p dernal que se piensa esté conectado con los jugos del fallamien de 38 a 43 m.	as 5/ as in co g- si in e-

La base de la unidad 1 principia a 45 m sobre el lecho del arroyo y falla.

ESPESOR EN

DESCRIPCIÓN

Posiblemente la unidad debe incluir unos 15 m más de la misma caliza, pero debido al plegamiento estructural y a que la parte inferior de la pendiente está cubierta, se omitieron estos 15 m dudosos.

Espesor	parci	al d	e l	a Unida	d 5	(Lámina	1)	 	 	692
Espesor	total	de	la	Unidad	4	(Lámina	1)	 	 	247
Espesor	total	de	la	Unidad	3	(Lámina	1)	 	 	49
Espesor	total	de	la	Unidad	2	(Lámina	1)	 	 	177
Espesor	total	de	la	Unidad	1	(Lámina	1)	 	 	277
Espesor	total	de	la	SM 8 .				 	 	1442

SM 9

Todas las Unidades 1, 2 y 3 (Lámina 1). La sección se midió de manera confusa. La Unidad 1 (Lámina 1) y la parte inferior de la Unidad 2 (Lámina 1) se midieron de las capas más antiguas a las más jóvenes en el flanco NE de la sierra, generalmente S 10° E. La Unidad 3 (Lámina 1) y la mayor parte de la Unidad 2 (Lámina 1) se midieron de las capas más jóvenes a las más antiguas en el flanco opuesto (SW) y sobre la cima de la sierra, generalmente N 10° W, la localización de la sección en la Lámina 3.

La base de la sección (Ordovícico más antiguo) yace en el flanco NE de la Sierra de Placer de Guadalupe a 1.5 Km al N60°W del pueblo de Placer de Guadalupe (i.e. a medio camino entre Coyame y Placer de Guadalupe). La base de la sección invertida está 16 m al SW del sendero que va a Placer de Guadalupe y está cubierta por una hoja de cobijadura de la "formación verde". La base está en una silla N-S que forma un parte aguas hacia el NW y SE. Hacia el N una colina de arenisca (probablemente de la Unidad 5 (Lámina 1) se levanta 150 m sobre el nivel del área circundante.

La cima de la sección (Pensilvánico inferior) yace en el flanco SW de la sierra a unos 500 m al N del camino a la ciudad de Chihuahua. La cima está subyacida (porque está invertida) por la Unidad 4 (Lámina 1) y yace cerca del extremo del aluvión al pie de la pendiente. La cima yace en un arroyo de segunda importancia NW de la desviación a Placer de Guadalupe o a medio camino entre los extremos NW-SE de la sierra de 3 Km de largo.

UNIDAD 3 (Lámina 1)

La cima según descripción anterior.

ESTRATO DESCRIPCIÓN

ESPESOR EN

9A Caliza limolítica con pedernal, moderadamente resistente en la base y dura en la cima (en las unidades 9A·9E, la cima significa las capas más jóvenes de la unidad) gris obscuro medio (N4) que se intemperiza a gris medio (N5) con manchas rojo pálido (5R6/2) en las superficies de estratificación, pedernal negro grisáceo (N2) que se intemperiza a café grisáceo (5YR3/2), estratos

ESTRATO	DESCRIPCION	METROS
	medios que cambian a estratos gruesos hacia la cima, pedemal 3-5% (la caliza con pedernal (Unidad 4, lámina 1) sobre la cual se encuentran 33 m o más de espesor, contiene, 20-30% de pedernal), unos cuantos Chonetes y otros braquiópodos	
9B	Caliza, moderadamente resistente a dura, negro grisáceo (N2) que se intemperiza a gris obscuro (N3) a gris obscuro medio (N4), estratos gruesos a masivos, 1% de pedernal limoso, fragmentos de crinoides, tiende a ser friable y se fractura fácilmente	
9C	Caliza limosa con pedernal y caliza con pedernal, moderadamente resistente a suave, grises obscuros de varios tonos con manchas rojo pálido (5R6/2) más abundantes que en la Unidad 9A. estratos medios a delgados (40-5 cm), pobremente expuesta formando una pendiente suave	,
9D	Caliza, moderadamente resistente a dura, negro grisáceo (N2) estratos medios, trazas de pedernal, unos pocos crinoides, se frac tura fácilmente; discordancia en la base difícil de localizar tiene fragmentos silíceos retrabajados pequeños que se intempe rizan a negro (mucho barniz del desierto) más hacia el SE hay 60 ó 90 cm de la Unidad 3 (Lámina 1) con remanentes lutíticos, aquí ha sido erosionada	; ; ;
9E	Caliza, caliza dolomítica y dolomita, dura, la caliza gris clare medio típico (N6) pero en los 33 m de la cima la caliza e gradacional a gris obscuro medio (N4) que se intemperiza a (N5), dolomita naranja amarillento obscuro (10YR6/6) que se intemperiza a café amarillento moderado (10YR5/4), masive y muy difícil de medir, sin pedernal, sin braquiópodos, Favosite es común (algunos hasta de 10 cm de diámetro), particularment la parte superior, algunos corales córneos y fragmentos de crinoi des; Favosites sp. 9E-14, lente de corales córneos a 10 m, Favosites a 16 m, Favosites pequeños a 41 m; fragmentos de crinoi des, caliza gris claro medio (N6) a 51 m; la caliza se intemperiza blanco, parece recristalizada a 52 m; coral indeterminado, posi blemente Alveolites 9E-195; coral similar a 9E-195 a 100 m Favosites (Emmonsia) sp. GH = 9E-400, primera caliza dolomítica a 172 m, 3 lentes de 1.50 m de dolomita de 164 a 170, 30% de dolomita de 170 a 180 m; sin dolomita, los únicos fósiles sos unos cuantos fragmentos de crinoide de 185 a 190 m; crest de la sierra a 188 m, estilolitas a 200 m, manchas dolomíticas de	s a e e a s s e e i i a a i 6 n a a e e
	200 a 210	. 210

Las Unidades 9A-9E se midieron de más joven a más antiguo, las unidades 1-20 se midieron de más antiguo a más joven

Dolomita, dura café amarillento pálido (10YR6/2) que se intemperiza a naranja grisáceo (10YR7/4), braquiópodos y conodontos más o menos abundantes; 30.60 cm de caliza en la base, pedernal en la parte basal, braquiópodo¹ no identificable 9.20.0 (9.dol.0 se usó en la nomenclatura antes de medir la sección), Cordylodus, Panderodus, Belodus, Hindeodella, Holodontus, Amorphognatus ordovicica, Ambolodus triangularis, DP = 9.20.0??; Panderodus, Acodus, Scolopodus, Cordylodus, Belodus, Periodon, Oistodus 9.dol.0; posible Diceromyonia,

ESTRATO	DESCRIPCIÓN	ESPESOR EN METROS
	Panderodus, Drepanodus, Belodus, Cordylodus, 9.20-2; rincone- lido grande, posiblemente Lepidocyclus, Amorphognathus, Drepa- nodus, Oistodus, Cordylodus, Panderodus 9.20.3; Plaesiomys aff. P. Subquadrata (Hall), Thaerodonta, ortidos no identifica- bles, Lepidocyclus, Drepanodus, Panderodus, Periodon, Mi- crocoelodus, Scandodus, Amorphognathus, Pygodus, Scolopo- dus, Ambolodus, Belodus, Belodina 9.20-4; Trigonirhynchia cf. T. sulcata 9.20-6; buena capa marcadora debido a su color naranja grisáceo, espesor variable	
19	Caliza con pedernal, dura, caliza gris café claro (5YR6/1) que se intemperiza a gris claro mediano (N6), pedernal oliva pálido (10Y6/2) a gris obscuro (N3) estratos delgados a medianos (5-35 cm) pedernal 30% de la unidad, nodular pero en capas, pequeños braquiópodos ortidos (Zygospira?) y otros braquiópodos pequeños bien distribuidos pero no abundantes, forma buena capa marcadora	
18	Caliza lutítica y caliza, suave y pobremente expuesta en la base, dura hacia la cima, gris medio (N5) a gris obscuro medio (N4), estratos medios, cefalópodos rectos, el mismo braquiópodo pequeño que la unidad 20 (<i>Plaesiomys</i> ?)	
	Unidad 1 (Lámina 1)	
17	Arenisca, dura, sílice-cementada pero friable en parte, dominante- mente rojo grisáceo (5R4/2) se intemperiza a varios tonos de rojo pálido y café, estratos gruesos a medios, muchas venas de cuar- zo blanco, capa de lutita de 15 cm a 2 m, forma una cuesta resistente	
16	Caliza lutítica y lutita, moderadamente resistente a suave, manchas dolomíticas en la caliza dan color café amarillento moderado (10YR5/4) al intemperizarse, la lutita negro grisáceo (N2) estratos delgados (2.5-15 cm), braquiópodo pequeño y fragmentos de pelecípodos en la caliza, algunos briosuarios; Acodus, Oistodus, Aphelognathus, Belodus 9.16-19	3
15	Arenisca y poca lutita, friable a moderadamente resistene dominantemente blanca pero alternando a varios tonos de rojo grisáceo (5R4/2) y gris verdoso (5GY6/1) se intemperiza a café opaco y rojo con barniz del desierto negro, estratos gruesos a medios, oquedades en la base, falla (deslizamiento a rumbo?) orientada N 30°W, pequeños fragmentos de braquiópodos de 17 a 18 m. Lingula¹ grande 9-15-55; pequeño gasterópodo no determinado 9-15-56	
14	Lutita, moderadamente resistente, físil, dominantemente gris obscuro (N3), ocasionalmente gris oliva claro (5Y5/2) con café claro (5YR5/6), la parte superior tiene caliza lutítica en lentes con briosuarios y braquiópodos; braquiópodos grandes, posiblemente Macrocoelia 9-14-7; Multicostella 9-14-12	3
13	Caliza, dura a moderadamente resistente, gris obscuro medio (N4) que se intemperiza con manchas café amarillento moderado 10YR5/4), masiva a de estratos gruesos, cefalópodo recto a 2 m, apariencia de intemperismo un poco nodular	2

ESTRATO	DESCRIPCIÓN	SPESOR EN METROS
12	Lutita con capitas de caliza lutítica, dura, físil, gris obscuro (N3) que se intemperiza a gris oliva claro (5Y5/2), caliza arenosa de 15 cm en la base, braquiópodos y briosuarios en las capitas de caliza lutítica; ortidos grandes posiblemente Multicostella 9-12-5 y 9-12-7	3
11	Caliza, dura, gris medio (N5) que se intemperiza con muchas manchas rojo pálido (5R6/2) estratos medios (12.5-20 cm); trilobite (Ceraurus?) a 20 m, cefalópodo recto a 25 m, Maclurites de 32 a 39 m; braquiópodo¹ no identificable (ortido?) 9-11-120; más masiva a 36 m, manchas dolomíticas y unas cuantas esponjas a 40 m; nautiloide⁴ recto y grande, Maclurites,⁴ esponja receptaculitida² 9-11-140; unos cuantos nódulos de pedernal en lentes a 47 m, Maclurites a 47 m, lente dolomítico de 15 cm a 48 m, Maclurites y cefalópodos a 55 m	
10	Arenisca calcárea, menos resistente que la Unidad 8, se intemperiza con un tinte rojizo, gasterópodos (Palliseria??) en la base	4
9	Caliza lutítica con un poco de lutita, moderadamente resistente a suave, la lutita es negro oliva (5Y2/1), estratos medios a delgados	
8	Arenisca, dura, gris café claro (5YR6/1) a blanco con un tinte rojizo, se intemperiza a tonos más claros, un estrato grueso, algunas venas de cuarzo blanco, forma un acantilado suave	
7	Caliza, dura, sin manchas dolomíticas, estratos medios (30-90 cm) primer gasterópodo (Palliseria?) a 9 m, cefalópodo recto de 2.5 cm de diámetro y 15 cm de largo a 13 m, muchos paliseridos en el lecho del arroyo, más masiva a 14 m, abundantes paliseri dos de 24 a 28 m. Palliseria 9-8-88	e 5
6	Caliza con poco pedernal, el pedernal negro grisáceo (N2)	. 12
5	Caliza, lutítica, moderadamente resistente, pobremente expuesta	a 25
4	Caliza, poco lutítica, similar a la Unidad 2	. 12
3	Caliza dolomítica, dura, se intemperiza a gris medio (N5) con café amarillento moderado (10YR6/4), no fosilífera, un cambio de color notable a la secuencia caliza	0
2	Caliza, poco lutítica, dura, gris obscuro medio (N4) se intempe riza a gris medio (N5) con manchas gris rosado (5YR8/1) masiva a de estratos gruesos, pedernal negro nodular de 15 a 2	,
	m; abundantes fragmentos pequeños de crinoides a 19 m, y d 30 a 33 m	
1	Caliza, dura, gris obscuro medio (N4) que se intemperiza a gri medio (N5) con láminas delgadas color naranja muy pálid (10YR8/2), estratos delgados (1 a 2.5 cm), manchas dolomíticat trazas de pirita; fósil recto parecido a un cefalópodo de 8 cm dargo, muy abundante, unos cuantos crinoides, un trilobite, fragmentos de braquiópodos, un lente arenoso de 13 cm en la bas pedazo de trilobite¹ grande 9·10; braquiópodo¹ no identificable Hesperonomia?¹ 9·1·10; la unidad forma una pendiente de echa do, las capas tienen un rumbo de N60°W, echado invertida 40°NE, la base cubierta por una lámina de cobijadura de la comitation de la cobijadura de la comitation de la cobijadura de la cobijadu	0 6 6 3 7 8 8 8 8
	"formación verde"	

La base según descripción anterior

Espesor total de la Unidad 3 (Lám. 1)	
Espesor total de la Unidad 2 (Lám. 1)	228
Espesor total de la Unidad 1 (Lám. 1)	260
Espesor total de la SM 9	520

SM 10

Toda la Unidad 6 (Lámina 1). La sección fue medida de las capas más antiguas a las más jóvenes, generalmente N10°E, sobre terreno bajo e irregular adyacente al NW del camino del arroyo que va de Placer de Guadalupe a San Sóstenes. La sección empieza a 1.5 km al N de Placer de Guadalupe según se muestra en la Lámina 3. La sección fue medida rápidamente y es poco precisa, se hizo así para establecer las zonas de amonitas para correlacionar la Unidad 6 (Lámina 1) en el área de Plomosas.

Unidad 6 (Lámina 1)

Al pie y al NE de una escarpa de caliza de la Unidad 6 (Lámina 1) en la base de la Formación Las Vigas.

ESTRATO	DESCRIPCIÓN	ESPESOR EN METROS
23	Caliza, se intemperiza a café amarillento sucio estratos medios, no se encontraron fósiles	
22	Caliza, gris, estratos medios, a 40 m de la cresta de la loma hay una capa de 1 m de espesor que contiene pedazos de caliza (retrabajada?), un poco invertida, algunos pelecípodos pequeños	
21	Mármol, se intemperiza a blanco café, un poco de brecha de solución, la cima de la unidad en la cima de la loma espesor variable, no se encontraron fósiles	
20	Caliza, con abundantes venas de 3 a 7 mm de espesor (poco mar molizada), formando un acantilado, no se encontraron fósiles	15
19	Caliza lutítica estratos delgados a ondulantes, formando un pequeño valle pero más resistente que la unidad 17, no se encontraror fósiles	1
18	Caliza, gris obscuro, estratos medios a ondulantes, moderadamente resistente, formando pequeña loma no se encontraron fósiles	11
17	Lutita, se intemperiza morado pálido, un poco yesífera en algunas localidades, no resistente, formando valles; amonitas CY y peque nos pelecípodos a 42 m, Kossmatia kingi (Imlay) UT 38599 UT 38611, UT 38635	
16	Intervalo cubierto (lutita?) y arenisca arriba de los 44 m, suele café amarillento del que se asume que es aluvión cuaternario)

STRATO	DESCRIPCIÓN	ESPESOR EN METROS
	sobre el intervalo cubierto, un poco de yeso cerca de la base de la arenisca material de apariencia tobácea de color blanco, terciario (riolita?) en una localidad, la arenisca forma lomas resistentes; muchos fragmentos de amonitas CX bajo la base de la arenisca, Kossmatia kingi (Imlay) UT 38594, UT 38609, UT 38624, UT 38631, UT 38634; K. rancheriaensis (Imlay) UT 38625; K. cf. alamitoensis (Castilla y Aguilera) UT 38623, UT 38626, UT 38631, UT 38636	
15	Lutita, cubierta excepto por dos capas de caliza de 60 cm, material de color verde (volcánico terciario?) a 135 m, falla probable a 150 m; pelecípodo CV a 63 m, Lamellaptychus cf. excavatus (Trauth) UT 38591; amonita CW a 93 m, cf. Virgatosphinctes cf. denseplicatus (Waagen) UT 38474	
14	Caliza lutítica, principalmente cubierta por depósitos de terraza se intemperiza a morado pálido, no se encontraron fósiles	
13	Lutita, principalmente cubierta por depósitos de terraza, negra pelecípodos CU a 6 m	53
12	Caliza lutítica, los diez metros superiores son de arenisca, la cima de la unidad en un arroyo en la base de un corte vertical Subplanites? grande 33 cm de diámetro, amonitas quebradas er concresiones; amonitas CT a 9 m, Subplanites fresnoensis (Im lay) TT 38487; amonitas CS a 12 m, S. fresnoensis (Imlay) UT 38638, Virgatosphinctes adkinsi (Imlay) TT 38595	, 1 7
11	Lutita, negra, silícica, algunas amonitas piritizadas, (CR?)	. 3
10	Lutita, los 24 m inferiores están cubiertos, Subplanites?, de costillas largas empieza a los 30 m	. 35
9	Caliza lutítica con 6 m de arenisca en la cima; muchas amonita pobremente conservadas (CP) a 5 m; amonitas CU a 21 m	
8	Lutita, un poco de caliza y capitas de arenisca; amonitas CO	a . 20
7	Lutita en los 10 m inferiores, arenisca en los 10 m superiores, l arenisca cubre el acantilado más alto en esta parte de la sección pequeños pelecípodos CN a 10 m	;
6	Lutita, gris, suave, tiende a intemperizarse en pedazos globulare un poco de caliza y capitas de arenisca, principalmente cubierte arenisca a 54 m cubre la loma la cual es tan alta como aquell compuesta de conglomerado situado estratigráficamente bajo l base de la sección pero no tan alto como la loma en la unidad los 47 m superiores pobremente expuestos con abundantes fraçmentos de plantas; fragmentos quebrados de amonitas (CL) 14 m; fragmento de amonitas CM a 8 m	a a a, 7, g- a
5	Sin descripción, (principalmente caliza?), muchas amonitas bie conservadas; amonita CG en la base, <i>Pseudolissoseras?</i> sp. U 38592; CC en la base, cf. <i>Subplanites fresnoensis</i> (Imlay) U 38590; amonita CB a 3 m, cf. <i>Virgatosphinctes adkinsi</i> (Imlay)	T T

ESTRATO	DESCRIPCIÓN	ESPESOR E
-mpr		METROS
	UT 38472, UT 38482, Pseudolissoseras sp.º UT 38471; CH a 12 m.	,
	P.? sp.' UT 38481 (3 piezas); CI a 20 m, P.? sp.' UT 38486, UT	

38620; amonita CJ a 24 m; amonita CK a 26 m; (observación de campo; algunas amonitas de la base de la unidad 5 son las mismas que las amonitas de las unidades 2 y 3 (CE)??, (esta observación no está substanciada en la Universidad de Texas posiblemente debido a colecta incompleta) ejemplar de mano 108 colectado a 26 m, fragmentos de hojas en un plano de estratificación, esporas en la roca (ver texto) 4 Arenisca, grano fino, un poco de lutita, no se encontraron fósiles Lutita, un poco de caliza (micrita); zona de amonitas CE (Idoseras?⁷) se extiende hasta la mitad de la unidad 3 2 Caliza lutítica, estratos delgados, llena de amonitas de 5 a 12.5 cm de diámetro, todas del mismo género; zona CE de las unidades 1, 2 y 3, Idoseras? sp. ; todos los especimenes están aplastados, de tal manera que la quilla no está intacta y no se puede hacer una identificación positiva del género, comunicación oral (Keith Young), UT 38473, UT 38483, U 38484, UT 38587, UT 38589, UT 38593, UT 38606, UT 38067, UT 38608, UT 38613, 1 Lutita, no resistente, zona CE de amonitas (Idoceras?⁷) principia a 10 m: Bridges sugiere que el contacto basal con el conglomerado subvacente es discordante; autores anteriores incluyen el conglomerado en el Mesozoico; Bridges coloca el conglomerado en la Unidad 5 (lám. 1) Al pie y al NE de un acantilado conglomerático

Espesor total de la SM 10 892

NOTAS SOBRE LA GEOLOGIA DE LA REGION DE PLACER DE GUADALUPE Y PLOMOSAS, ESTADO DE CHIHUAHUA

ZOLTAN DE CSERNA

CONTENIDO

	Página
Resumen	135
Introducción	136
Estratigrafía	137
Tectónica	140
Trabajos citados	143

RESUMEN

El área de Placer de Guadalupe y Plomosas constituye la parte noroccidental de la Sierra de La Monilla, al norte y noroeste del Río Conchos, en el noreste del Estado de Chihuahua. Estudios recientes llevados a cabo por Bridges (1964) revelaron por vez primera en esta parte de México la presencia de rocas sedimentarias paleozoicas anteriores al Carbonifero.

La evaluación crítica de los resultados obtenidos por Bridges, apoyada por unas observaciones de campo hechas por el autor y por datos geológicos regionales indica que la secuencia estratigráfica paleozoica fue severamente deformada durante principios del Pérmico (Epoca Orogénica Marathon), produciéndose cabalgamiento desde el noreste hacia el suroeste, y durante el Pérmico Tardío-Triásico Temprano (Orogenia Coahuiliana), produciéndose cabalgamiento desde el este. Las rocas mesozoicas acusan el desarrollo de pliegues con rumbo NNW-SSE durante la Orogenia Hidalgoana (Eoceno temprano), que también afectó a las rocas y estructuras formadas en tiempos anteriores al Mesozoico.