Part 1. Physical Stratigraphy and Petrology of the Cretaceous Sierra Madre Limestone, West-Central Chiapas
Keywords:
lithological, deposit, hypersaline, lithofaciesAbstract
A 2,575 m thick composite stratigraphic section of the Sierra Madre Limestone was measured southwest of Ocozocuautla, Chiapas. The formation is believed to be Neocomian to Santonian in age, although biostratigraphic control is poor. Eight major lithofacies were identified, representing four periods of carbonate platform deposition interrupted by three major marine inundations. The lithofacies occur in predictable vertical stratigraphic sequences, interpretable as facies tracts of analogous modern environments. The lithofacies represent deposition in hypersaline evaporite platform interior, carbonate platform interior, open interior lagoon, restricted interior lagoon, tidal mudflat, ooid sand shoal, open marine, and basinal open marine environments.
The dolomite and collapse breccia lithofacies represents deposition in a hypersaline platform interior environment. Collapse breccias indicate the former presence of evaporites. Petrographic evidence and field relationships indicate two primary generations of dolomite. Finely crystalline dolomite associated with the former evaporites is interpreted as penecontemporaneous. Coarsely crystalline sucrosic dolomite, exhibiting anhedral crystalline mosaics and zones of euhedral rhombs, is interpreted as the result of pervasive deep burial dolomitization. The unit is believed to conformably overlie the San Ricardo Formation, although stratigraphic and faunal evidence is inconclusive.
The lime mudstone, pellet, miliolid lime wackestone, and requieniid lime wackestone lithofacies were deposited in a quiet, shallow, low-energy platform interior environment. The environment was laterally equivalent to the hypersaline platform interior environment and was also reestablished following periods of rapid platform progradation after marine inundations.
The ooid and abraded skeletal fragment grainstone lithofacies was deposited in an ooid sand shoal environment, marginal to the prograding platform edge. The ooids are small (less than 0.2 mm mean diameter) and exhibit radial rather than concentric layering. The structure implies a relatively low-energy depositional environment for ooid formation, possibly as a result of diminished wave and current energy on the shallow open shelf. The shelf slope between the platform and the open marine environment was very gentle. A platform margin was established southwest of Ocozocuautla only during periods of tectonic instability or maximum global eustatic rises in sea level when the precipitous platform margin in the Reforma area was submerged.
Lime mudstones, requieniid wackestones, and thinly laminated dolomitic lime mudstones were deposited in a low-energy sublittoral and tidal flat environment directly leeward of the ooid sand shoal complex. Desiccation features and birdseye structures are common. The rapid lithologic change reflects a rapid energy change resulting from early lithification in the ooid sand shoal complex, which formed an effective, although discontinuous, barrier to open marine circulation.
The whole to fragmented radiolitid lime packstone to wackestone and pellet-intraclast lime packstone to wackestone lithofacies were deposited in a broad, gently circulated interior lagoon environment seaward of the platform interior environment and leeward of the ooid sand shoal complex and tidal mudflat environments. Planktonic foraminifers and echinoids are characteristic of the lithofacies in areas of the lagoon with more direct contact with open marine circulation and normal marine salinity. Better circulation and salinity probably resulted from lateral discontinuities in the ooid sand shoal barrier. The restricted lagoon environment was characterized by the absence of planktonic foraminifers and echinoids. Thinly laminated lime mudstones and stromatolites were deposited on supratidal exposures which restricted circulation in parts of the lagoon. Requieniid rudist lime wackestones are common in the restricted areas.
The fossiliferous marl and nodular mollusk lime wackestone lithofacies was deposited in the open marine shelf environment seaward of the ooid sand shoal environment. Planktonic foraminifers, echinoids, calcispheres, and sponge spicules are common. An open marine shelf environment developed when the carbonate platform submerged as a result of rapid rises in global sea level or rapid subsidence associated with tectonism and the influx of terrigenous clay. The carbonate platform was inundated during the mid-Cenomanian, late Cenomanian, and Coniacian. The maximum inundation occurred during the mid-Cenomanian when the planktonic foraminifer lime mudstone to wackestone lithofacies was deposited in a basinal open marine environment.
References
Anderson, T. H., Burkart, Burke, Clemons, R. E., Bohnenberger, O. H., & Blount, D. N. (1973). Geology of the western Altos Cuchumatanes, northwestern Guatemala. Geol. Soc. America Bull., 84, 805-826.
Ball, M. M. (1967). Carbonate sand bodies of Florida and the Bahamas. Jour. Sed. Petrology, 37, 556-591.
Ball, M. M., Shinn, E. A., & Stockman, K. A. (1967). The geologic effects of Hurricane Donna in south Florida. Jour. Geology, 75, 583-597.
Bathurst, R. G. G. (1966). Boring algae, micrite envelopes and lithification of molluscan biosparites. Geol. Jour., 5, 15-32.
Bathurst, R. G. G. (1975). Carbonate sediments and their diagenesis. Elsevier.
Blair, T. C. (1981). Alluvial fan deposits of the Todos Santos Formation of central Chiapas (Unpublished master's thesis). University of Texas at Arlington.
Blount, D. N., & Moore, C. H., Jr. (1969). Depositional and non-depositional carbonate breccias, Chiantla quadrangle, Guatemala. Geol. Soc. America Bull., 80, 429-441.
Bose, E. (1905). Reseña acerca de la geología de Chiapas y Tabasco. Inst. Geol. México, Bol., 20, 5-100.
Bricker, O. P. (Ed.). (1971). Carbonate cements. Johns Hopkins Press.
Broecker, W. S., & Takahashi, T. (1960). Calcium carbonate precipitation on the Bahama Banks. Jour. Geophys. Research, 71, 1575-1602.
Buffler, R. T., Watkins, J. S., Shaub, F. J., & Worzel, J. L. (1980). Structure and early geologic history of the deep central Gulf of Mexico basin. In The origin of the Gulf of Mexico and the early opening of the central North Atlantic Ocean – a symposium (pp. 3-16).
Burckhardt, C. (1930). Étude synthétique sur le Mésozoique mexicain (Mém. 49-50). Soc. Paléont. Suisse.
Burkart, Burke, & Clemons, R. E. (1972). Late Paleozoic orogeny in northwestern Guatemala. Conferencia Geológica del Caribe, 6, 210-213. Margarita, Venezuela.
Castro-Mora, J., Schlaepfer, C. J., & Martínez-Rodríguez, E. (1975). Estratigrafía y microfacies del Mesozoico de la Sierra Madre del Sur, Chiapas. Bol. Asoc. Mex. Geólogos Petroleros, 27, 1-103.
Cayeux, L. (1935). Les roches sedimentaires de France; roches carbonatées (calcaires et dolomies). Masson.
Chubb, L. J. (1959). Upper Cretaceous of central Chiapas, Mexico. Am. Assoc. Petroleum Geologists Bull., 43, 725-755.
Clemons, R. E., Anderson, T. H., Bohnenberger, O. H., & Burkart, Burke. (1974). Stratigraphic nomenclature of recognized Paleozoic and Mesozoic rocks of western Guatemala. Am. Assoc. Petroleum Geologists Bull., 58, 313-320.
Cloud, P. E., Jr. (1962). Environments of calcium carbonate deposition west of Andros Island, Bahamas. U. S. Geol. Survey, Prof. Paper, 350, 138 p.
Contreras-Velázquez, H., & Castillón-Bracho, M. (1968). Domes of Isthmus of Tehuantepec. Am. Assoc. Petroleum Geologists, Mem., 8, 244-260.
Coogan, A. H. (1977a). Bahamian and Floridian biofacies. In H. G. Multer (Ed.), Field guide to some carbonate rock environments, Florida Keys and western Bahamas (pp. 354-358). Kendall/Hunt Publ. Co.
Coogan, A. H. (1977b). Early and middle Cretaceous Hippuritacea (rudists) of the Gulf Coast. In D. G. Bebout & R. G. Loucks (Eds.), Cretaceous carbonates of Texas and Mexico; applications to subsurface exploration (pp. 32-70). University of Texas, Bur. Econ. Geology, Rept. Invest. 89.
Coogan, A. H., Bebout, D. G., & Maggio, C. (1972). Depositional environments and geologic history of Golden Lane and Poza Rica trend, Mexico, an alternative view. Am. Assoc. Petroleum Geologists Bull., 56, 1419-1447.
Davies, P. J., Bubela, B., & Ferguson, J. (1978). The formation of ooids. Sedimentology, 25, 703-730.
Dengo, G. (1975). Paleozoic and Mesozoic tectonic belts in Mexico and Central America. In A. E. M. Nairn & F. G. Stehli (Eds.), The ocean basins and margins; Volume 3, the Gulf of Mexico and the Caribbean (pp. 283-323). Plenum Press.
Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In Classification of carbonate rocks — a symposium (pp. 108-121). Am. Assoc. Petroleum Geologists, Mem., 1.
Dunham, R. J. (1971). Meniscus cement. In O. P. Bricker (Ed.), Carbonate cements (pp. 297-300). Johns Hopkins Press.
Dzens-Litovsky, A. L., & Vasil’yev, G. V. (1973). Geologic conditions of formation of bottom sediments in Karabogaz-Gol in connection with fluctuations in Caspian sea level. In D. W. Kiekland & R. Evans (Eds.), Marine evaporites, origin, diagenesis, and geochemistry (pp. 9-16). Dowden, Hutchinson & Ross.
Enos, P., & Perkins, R. D. (1977). Quaternary sedimentation in south Florida. Geol. Soc. America, Mem., 147, 148 p.
Evans, G., Kinsman, D. J. J., & Shearman, D. F. (1964). A reconnaissance survey of the environment of Recent sedimentation along the Trucial Coast, Persian Gulf. In L. M. J. U. Van Straaten (Ed.), Deltaic and shallow marine deposits (pp. 129-135). Elsevier.
Evans, G., Schmidt, V., Bush, P., & Nelson, H. (1969). Stratigraphy and geologic history of the sabkha, Abu Dhabi, Persian Gulf. Sedimentology, 12, 145-159.
Folk, R. A. (1959). Practical petrographic classification of limestones. Am. Assoc. Petroleum Geologists Bull., 43, 1-38.
Friedman, G. M. (1959). Identification of carbonate minerals by staining methods. Jour. Sed. Petrology, 29, 87-97.
Friedman, G. M. (1977). The Bahamas and southern Florida: A model for carbonate deposition. In H. G. Multer (Ed.), Field guide to some carbonate rock environments, Florida Keys and western Bahamas (p. 388). Kendall/Hunt.
Friedman, G. M. (1980). Dolomite is an evaporite mineral: Evidence from the rock record and from sea-marginal ponds of the Red Sea. In D. H. Zenger, J. B. Dunham, & R. L. Ethington (Eds.), Concepts and models of dolomitization (pp. 69-80). Society for Economic Paleontologists and Mineralogists, Spec. Publ. 28.
Garrett, P. (1977). Biological communities and their sedimentary record. In L. A. Hardie (Ed.), Sedimentation on the modern carbonate flats of northwest Andros Island, Bahamas (pp. 124-158). Johns Hopkins Univ., Studies Geology, 22.
Gebelein, C. D. (1969). Distribution, morphology and accretion rate of Recent subtidal algal stromatolites, Bermuda. Jour. Sed. Petrology, 39, 49-69.
Ginsburg, R. N. (1957). Early diagenesis and lithification of shallow water carbonate sediments in south Florida. In R. J. LeBlanc & J. G. Breeding (Eds.), Regional aspects of carbonate deposition (pp. 80-99). Society for Economic Paleontologists and Mineralogists, Spec. Publ. 5.
Ginsburg, R. N. (1964). South Florida carbonate sediments. Geol. Soc. America, Annual Meeting, Guidebook Field Trip 1, 72 p.
Ginsburg, R. N. (1972). South Florida carbonate sediments. In Sediments II; marine geology and geophysics. University of Miami, Riosenstiel School of Marine and Atmospheric Science.
Ginsburg, R. N., Bricker, O. P., Wanless, H. R., & Garrett, P. (1970). Exposure index and sedimentary structures of a Bahama tidal flat. Geol. Soc. America, Abstracts with Programs, 2, 744 (abstract).
Ginsburg, R. N., & Hardie, L. A. (1975). Tidal and storm deposits, northwestern Andros Island, Bahamas. In R. N. Ginsburg (Ed.), Tidal deposits: A casebook of Recent examples and fossil counterparts (pp. 201-208). Springer-Verlag.
Gorsline, D. S. (1963). Environments of carbonate deposition, Florida Bay and Florida Straits. In R. O. Bass & S. L. Sharps (Eds.), Shelf carbonates of the Paradox Basin (pp. 130-143). Four Corners Geol. Soc., Annual Field Conference, 4.
Grover, G., Jr., & Reed, J. F. (1978). Fenestral and associated diagenetic fabrics of tidal flat carbonates, Middle Ordovician New Market Limestone, southwestern Virginia. Jour. Sed. Petrology, 48, 453-473.
Gutiérrez-Gil, R. (1956). Bosquejo geológico del Estado de Chiapas. México, D. F., Internat. Geol. Cong., 20, Libreto-guía de la excursión C-15, 9-32.
Harris, P. M. (1977). Depositional environments of Joulters Cays area. In H. G. Multer (Ed.), Field guide to some carbonate rock environments: Florida Keys and Western Bahamas (pp. 157-162). Kendall/Hunt.
Harrison, R. S., & Steinen, R. P. (1978). Subaerial crusts, caliche profiles, and breccia horizons: Comparison of some Holocene and Mississippian exposure surfaces, Barbados and Kentucky. Geol. Soc. America Bull., 89, 385-396.
Ilung, L. V. (1959). Deposition and diagenesis of some upper Paleozoic carbonate sediments in western Canada. World Petroleum Congress, 5, Proc., Section 1, Paper 2.
Kahle, G. F. (1974). Ooids from Great Salt Lake, Utah, as an analogue for the genesis and diagenesis of ooids in marine limestones. Jour. Sed. Petrology, 44, 30-39.
Kauffman, E. G., & Sohl, N. F. (1974). Structure and evolution of Antillean Cretaceous rudist frameworks. VerhandL Naturf. Ges. Basel, 84, 399-467.
Kendall, C. G. St. G., & Skipwith, P. A. D' E. (1968). Holocene shallow-water carbonate and evaporite sediments of Khor al Bazam, Abu Dhabi, southwest Persian Gulf. Am. Assoc. Petroleum Geologists Bull., 53, 841-869.
Kresia, R. D. (1981). Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia. Jour. Sed. Petrology, 51, 823-848.
Laporto, L. (1967). Carbonate deposition near mean sea-level and resultant facies mosaic; Manlius Formation, Lower Devonian of New York State. Am. Assoc. Petroleum Geologists Bull., 51, 73-102.
Locan, B. W. (1974). Diagenesis in Holocene-Recent carbonate sediments. In B. Logan (Ed.), Proceedings of the symposium on the diagenesis of carbonate rocks (pp. 1-18).
Longman, M. W. (1980). Carbonate diagenetic textures from near-surface diagenetic environments. Am. Assoc. Petroleum Geologists Bull., 64, 461-487.
López-Ramos, E. (1975). Carta geológica del Estado de Chiapas (2nd ed.). Universidad Nacional Autónoma de México.
Loucks, R. G. (1977). Porosity development and distribution in shoal-water carbonate complexes—subsurface Pearsall Formation (Lower Cretaceous), South Texas. In D. G. Bebout & R. G. Loucks (Eds.), Cretaceous carbonates of Texas and Mexico; applications to subsurface exploration (pp. 97-126). University of Texas, Bureau of Economic Geology, Rept. Invest. 89.
Mandelbaum, H., & Sanford, J. T. (1952). Table for computing thickness of strata measured in a traverse or encountered in a borehole. Geol. Soc. America Bull., 63, 765-776.
Mattes, B. W., & Mountjoy, E. W. (1980). Burial dolomitization of the Upper Devonian Miette buildup, Jasper National Park, Alberta. Soc. Econ. Paleontologists and Mineralogists, Spec. Publ., 28, 259-297.
McKee, E. D., & Gutschick, R. G. (1969). History of Redwall Limestone of northern Arizona. Geol. Soc. America Mem., 114, 726 p.
McKenzie, J. A., Hsu, K. J., & Schneider, J. F. (1980). Movement of subsurface waters under the sabkha, Abu Dhabi, UAE, and its relation to evaporite dolomite genesis. In D. H. Zenger, J. B. Dunham, & R. L. Ethington (Eds.), Concepts and models of dolomitization (pp. 11-30). Soc. Econ. Paleontologists and Mineralogists, Spec. Publ., 28.
Moore, H. G. (1966). Ecology of echinoids. In R. A. Boolootian (Ed.), Physiology of Echinodermata (pp. 73-83). Interscience.
Moravec, D. L. (1983). Study of the Concordia Fault System near Jerico, Chiapas, Mexico (M. Sc. thesis, University of Texas at Arlington, unpublished).
Muller, G. (1971). “Gravitational” cement: An indicator for the vadose zone of subaerial diagenetic environment. In O. P. Bricker (Ed.), Carbonate cements (pp. 301-302). Johns Hopkins Press.
Müllerried, F. K. G. (1936). Estratigrafía preterciaria preliminar del Estado de Chiapas. Bol. Soc. Geol. Mexicana, 9, 31-41.
Multer, H. G. (1977). Field guide to some carbonate rock environments; Florida Keys and western Bahamas. Kendall/Hunt Pub. Co.
Multer, H. G., & Hoffmeister, J. É. (1968). Subaerial laminated crusts of the Florida Keys. Geol. Soc. America Bull., 79, 183-192.
Perkins, B. F. (1969). Rudist faunas in the Comanche Cretaceous of Texas. In Shreveport Geological Society Guidebook, 1969, Spring Field Trip; Comanchean Stratigraphy of the Fort Worth-Waco-Belton Area, Texas (pp. 121-137). Louisiana State University.
Perkins, B. F. (1974). Paleoecology of a rudist reef complex in the Comanche Cretaceous Glen Rose Limestone of central Texas. Geoscience and Man, 8, 131-173.
Perkins, R. D. (1963). Petrology of the Jeffersonville Limestone (Middle Devonian) of southeastern Indiana. Geol. Soc. America Bull., 74, 1335-1354.
Perkins, R. D., & Enos, P. (1968). Hurricane Betsy in the Florida-Bahama-area: Geologic effects and comparison with Hurricane Donna. Jour. Geology, 76, 710-717.
Purdy, E. G. (1963). Recent calcium carbonate facies of the Great Bahama Bank: 1. Petrology and reaction groups; 2. Sedimentary facies. Jour. Geology, 71, 334-535, 472-497.
Purser, B. H. (Ed.). (1973). The Persian Gulf; Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer-Verlag.
Reeves, C. C., Jr. (1976). Caliche. Estacado Books.
Richards, H. G. (1963). Stratigraphy of earliest Mesozoic sediments in southeastern Mexico and western Guatemala. Am. Assoc. Petroleum Geologists Bull., 47, 1861-1870.
Roberts, R. J., & Irving, E. M. (1957). Mineral deposits of Central America. U. S. Geological Survey, Bull. 1034.
Rusnak, G. A. (1960). Some observations of recent oolites. Jour. Sed. Petrology, 30, 471-480.
Sánchez-Montes de Oca, R. (1969). Estratigrafía y paleogeografía del Mesozoico de Chiapas. Instituto Mexicano del Petróleo, Seminario Expl. Petrol., Mesa Redonda 5.
Sapper, K. (1894). Grundzüge der physikalischen Geographic von Guatemala. Petermann’s Geogr. Mitt., Erg. 24, n. 113.
Sapper, K. (1899). Über Gebirgsbau und Boden des nördlichen Mittelamerika. Petermann’s Geogr. Mitt., Erg. 27, n. 127.
Scotese, C. R., Bamback, R. K., Barton, C., Van der Voo, R., & Ziegler, A. M. (In preparation). Mesozoic base maps. The University of Chicago, The University of Michigan.
Shinn, E. A. (1968a). Practical significance of birdseye structures in carbonate rocks. Jour. Sed. Petrology, 38, 215-224.
Shinn, E. A. (1968b). Burrowing in Recent lime sediments of Florida and the Bahamas. Jour. Paleontology, 42, 879-894.
Shinn, E. A., Lloyd, R. M., & Ginsburg, R. N. (1969). Anatomy of a modern carbonate tidal-flat, Andros Island, Bahamas. Jour. Sed. Petrology, 39, 1202-1228.
Steele, D. R. (1982). Physical stratigraphy and petrology of the Cretaceous Sierra Madre Limestone, west-central Chiapas, Mexico (M. Sc. thesis, University of Texas at Arlington, unpublished).
Swanson, R. G. (1981). Sample examination manual. American Association of Petroleum Geologists, III-3 to III-9.
Tasch, P. (1973). Encoded data in living and fossil echinoids. In Paleobiology of the invertebrates, data retrieval from the fossil record (pp. 672-700). John Wiley.
Tebbutt, G. E., Conley, C. D., & Boyd, D. W. (1965). Lithogenesis of a distinctive carbonate rock fabric. University of Wyoming, Cont. Geology, 4, 162-467.
Vail, P. R., Mitchum, R. M., & Thompson, S. (1977). Seismic stratigraphy and global changes of sea level; part 4, global cycles of relative changes of sea level. Am. Assoc. Petroleum Geologists Mem., 26, 83-97.
Ver Wiebe, W. A. (1925). Geology of the southern Mexico oil fields. Pan-Am. Geol., 44, 12-128.
ViniegrAtOsorio, F. (1971). Age and evolution of salt basins of southeastern Mexico. Am. Assoc. Petroleum Geologists Bull., 55, 478-494.
ViniegrAtOsorio, F. (1981). Great carbonate bank of Yucatán, southern Mexico. Jour. Petroleum Geology, 3, 247-278.
Vinson, G. L. (1962). Upper Cretaceous and Tertiary stratigraphy of Guatemala. Am. Assoc. Petroleum Geologists Bull., 46, 425-456.
Waite, L. E. (1983). Biostratigraphic and paleoenvironmental analysis of the Cretaceous Sierra Madre Limestone, Chiapas, southern Mexico (M. Sc. thesis, University of Texas at Arlington, unpublished).
Walper, J. L. (1960). Geology of Cobán-Purulhá area, Alta Verapaz, Guatemala. Am. Assoc. Petroleum Geologists Bull., 44, 1273-1315.
Wanless, H. R., Burton, E. A., & Dravis, J. (1981). Hydrodynamics of carbonate fecal pellets. Jour. Sed. Petrology, 51, 27-36.
Wilson, H. H. (1974). Cretaceous sedimentation and orogeny in nuclear Central America. Am. Assoc. Petroleum Geologists Bull., 58, 1348-1396.
Windland, H. D., & Matthewes, R. R. (1974). Origin and significance of grapestone, Bahama Islands. Jour. Sed. Petrology, 44, 921-927.
Wong, P. K., & Oldershaw, A. (1981). Burial cementation in the Devonian Daybob Reef Complex, Alberta, Canada. Jour. Sed. Petrology, 51, 507-520.
Zavala-Moreno, J. M. (1971). Estudio geológico del proyecto hidroeléctrico Cañón del Sumidero, Río Grijalva, Estado de Chiapas. Bol. Asoc. Mex. Geólogos Petroleros, 23, 1-92.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Boletín del Instituto de Geología

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.