Part 3: Geothermometry and Geobarometry in Mantle and Crustal Base Xenoliths in the State of San Luis Potosí, Mexico

Authors

  • José Jorge Aranda-Gomez Regional Station of the Center, Institute of Geology, National Autonomous University of Mexico (UNAM), P.O. Box 376, 36000 Guanajuato, Gto., Mexico

Keywords:

Geothermometry, geobarometry, xenoliths, alkaline rocks, San Luis Potosí, Mexico

Abstract

Alkaline and basic, of Quaternary age; some of them transported to the surface xenoliths from the mantle and the base of the crust. Among the localities with inclusions, six phreatomagmatic structures or maars (explosion craters) stand out due to the abundance and variety of their xenoliths. These craters are surrounded by pyroclastic deposits composed of a heterolithic tuffaceous breccia made up of basanite, limestone, and xenoliths.

In the craters where magmatic activity preceded the eruptions that formed the maars, basanitic rocks devoid of xenoliths can be observed beneath the heterolithic breccias. The maars are grouped into two distinct clusters, designated as the Ventura Group (La Joya Honda, La Joyuela, and Laguna de Los Palau) and the Santo Domingo Group (La Joya Prieta, La Joya de los Contreras, and Xalapasco de Santo Domingo). These groups exhibit marked differences in both geological setting and xenolith assemblages, each associated with a tectonic feature of different regional significance.

The volcanoes of the Ventura Group are associated with a large graben known as the Villa de Reyes Graben. The Santo Domingo Group, located 75 km from Ventura, appears to be associated with a normal fault (?) trending E-W, which displaces all the main structures of the area.

The xenolith assemblages vary widely in composition, ranging from ultramafic to felsic, as well as in mineral paragenesis and texture. The most abundant xenolith type in five of the maars is spinel lherzolite; in contrast, in the remaining maar, kaersutite megacrysts are the most common inclusion.

Xenoliths found in both volcanic groups include two-pyroxene granulite, garnet and/or spinel websterite, two-pyroxene granulite with garnet and/or spinel, and quartz-feldspathic gneiss with sillimanite and garnet. In the Santo Domingo Group, the following are found almost exclusively: hornblendite, kaersutite megacrysts, and high-pressure cumulate igneous rocks. In the Ventura Group, only spinel gabbro xenoliths are found.

Xenoliths with no visible alteration and reduced variance—degrees of freedom—in their paragenesis were selected for geochemical and petrological studies. The composition of the mineral phases in these samples was analyzed using an electron microprobe. The studied parageneses were: (1) Ol + Opx + Cpx + Spl; (2) Opx + Cpx + Grt + Pl; (3) Opx + Cpx + Spl + Grt; (4) Opx + Cpx + Spl + Pl; (5) Grt + Pl + Spl + Opx + Cpx; and (6) Grt + Sil + Qtz + Pl + Sa. Chemical and phase equilibrium data were used to determine the range of temperature and pressure conditions under which the xenoliths formed. Equilibrium temperature was estimated using thermal dependencies such as: (1) albite content in feldspar; (2) Fe-Mg partitioning between olivine and spinel and between garnet and clinopyroxene; (3) the pyroxene solvus; and (4) aluminum content in pyroxene.

Pressure was estimated based on: (1) the position of the sillimanite–kyanite reaction in the pressure–temperature diagram; (2) the stability limit of anorthite at high pressure and temperature; (3) the reaction separating the stability field of spinel gabbro from that of garnet–clinopyroxene granulite; and (4) the transition from spinel lherzolite to garnet lherzolite. The collected evidence indicates that all xenoliths equilibrated at temperatures of 950–1,000 °C and pressures ranging from 10 to 16 kb. It is believed that the xenoliths originated from a restricted zone corresponding to the mantle–crust interface.

This information was used to estimate the thickness of the crust in central Mexico, as well as its geothermal gradient, which appears to be similar to that of the Basin and Range Province in the United States of America.

References

Akella, J., & Boyd, F. R. (1974). Petrogenetic grid for garnet peridotites. Carnegie Institution of Washington Yearbook, 73(1), 269–273.

Albee, A. L., & Ray, L. (1970). Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates, and sulphates. Analytical Chemistry, 42(1), 405–421.

Aranda-Gómez, J. J. (1982). Ultramafic and high-grade metamorphic xenoliths from central Mexico (Doctoral dissertation). Eugene: University of Oregon. 236 páginas (Inédita).

Aranda-Gómez, J. J., & Labarthe-Hernández, G. (1977). Estudio geológico de la Hoja Villa Hidalgo, S.L.P. Universidad Autónoma de San Luis Potosí, Instituto de Geología y Metalurgia. Folleto técnico núm. 53, 33–58.

Aranda-Gómez, J. J., & Luhr, J. F. (1986). Spinel lherzolite-bearing basic volcanic centers of late-Quaternary age from San Luis Potosí, Mexico. Geological Society of America Abstracts with Programs, 18(1), 528 (Resumen).

Aranda-Gómez, J. J., & Ortega-Gutiérrez, F. (1987). Mantle xenoliths in Mexico. In Nixon, P. H. (Ed.), Mantle xenoliths (pp. 75–84). Nueva York: John Wiley and Sons.

Aranda-Gómez, J. J., Aranda-Gómez, J. M., & Nieto-Samaniego, Á. F. (1989). Consideraciones acerca de la evolución tectónica durante el Cenozoico de la Sierra de Guanajuato y la parte meridional de la Mesa Central. Universidad Nacional Autónoma de México, Instituto de Geología, Revista, 8(1), 33–45.

Aranda-Gómez, J. J., Luhr, J. F., & Nieto-Samaniego, Á. F. (1993). Localidades recién descubiertas de xenolitos del manto y de la base de la corteza en el Estado de San Luis Potosí, México. Universidad Nacional Autónoma de México, Instituto de Geología, Boletín, 106(2), 23–36.

Aranda-Gómez, J. J., Luhr, J. F., & Pier, J. G. (1993). Geología de los volcanes cuaternarios portadores de xenolitos del manto y de la base de la corteza en el Estado de San Luis Potosí, México. Universidad Nacional Autónoma de México, Instituto de Geología, Boletín, 106(1), 1–22.

Banno, S., & Schophel. (1970). Classification of eclogites in terms of physical conditions of their origin. Physics of the Earth and Planetary Interiors, 3(1), 405–421.

Barth, T. F. W. (1951). The feldspars geologic thermometers. Neues Jahrbuch für Mineralogie, 82(1), 143–154.

Bence, A. E., & Albee, A. L. (1968). Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76(1), 382–403.

Blackwell, D. D. (1971). The thermal structure of the continental crust. Geophysics Monograph, 14(1), 169–183.

Bohlen, S. R., & Essene, E. J. (1977). Feldspar and oxide thermometry of granulites in the Adirondack Highlands. Contributions to Mineralogy and Petrology, 62(1), 153–169.

Bohlen, S. R., Essene, E. J., & Hollman, K. S. (1980). Update on feldspar and oxide thermometry in the Adirondack Mountains, New York. Geological Society of America Bulletin, 91(1), 110–113.

Brown, W. L., & Parsons, L. (1981). Towards a more practical two feldspar geothermometer. Contributions to Mineralogy and Petrology, 76(1), 377–389.

Buddington, A. F., & Lindsley, D. H. (1964). Iron-titanium oxides and their synthetic equivalents. Journal of Petrology, 5(1), 310–357.

Dahl, P. S. (1980). The thermal-compositional dependence of Fe-Mg distributions between coexisting garnet and pyroxene: Applications to geothermometry. American Mineralogist, 65(1), 854–866.

Danckwerth, P. A., & Newton, R. C. (1978). Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2. Contributions to Mineralogy and Petrology, 66(1), 189–201.

Davis, B. T. C., & Boyd, F. R. (1966). The join Mg2Si2O6-CaMgSi2O6 at 30 kilobars and its application to pyroxene from kimberlites. Journal of Geophysical Research, 71(1), 483–487.

Ellis, D. J., & Green, D. H. (1979). An experimental study of the effect of Ca upon garnet clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71(1), 13–22.

Engi, M. (1978). Mg-Fe exchange among Al-Cr spinel, olivine, orthopyroxene, and cordierite (Doctoral dissertation, ETH Zurich). Número 8256. 95 páginas (Inédita).

Engi, M., & Evans, B. W. (1980). A re-evaluation of the olivine-spinel geothermometer—discussion. Contributions to Mineralogy and Petrology, 73(1), 201–203.

Evans, B. W. (1977). Metamorphism of alpine peridotite and serpentinite. Annual Reviews of Earth and Planetary Sciences, 5(1), 397–447.

Evans, B. W., & Frost, B. R. (1975). Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochimica et Cosmochimica Acta, 39(1), 959–972.

Evans, B. W., & Wright, T. L. (1972). Composition of liquidus chromite from the 1959 (Kilauea Iki) and 1985 (Makeopuhii) eruptions of the Kilauea volcano. American Mineralogist, 57

Fabriès, J. (1979). Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology, 69(1), 329–336.

Forbes, R. B., & Kuno, H. (1957). Peridotite inclusions and basaltic host rocks. In P. J. Wyllie (Ed.), Ultramafic and related rocks (pp. 328–336). Nueva York: John Wiley and Sons.

Fujii, T. (1977). Solubility of Al₂O₃ in enstatite coexisting with forsterite and spinel. Carnegie Institution of Washington Yearbook, 75(1), 566–571.

Ganguly, J. (1978). Garnet solid solution and geothermometry based on Fe-Mg distribution coefficient. EOS Transactions of the American Geophysical Union, 59(1), 395.

Ganguly, J. (1979). Garnet and clinopyroxene solid solutions, and geothermometry based on Fe-Mg distribution coefficient. Geochimica et Cosmochimica Acta, 43(1), 1021–1029.

Ganguly, J., & Kennedy, G. C. (1974). The energetics of natural garnet solid solution: Part 1, Mixing of the aluminosilicate end members. Contributions to Mineralogy and Petrology, 48(1), 137–148.

Gaskin, B. J., Butler, J. C., & Gaskin, W. A. (1973). Geology of the Xalapasco de La Joya crater. Geological Society of America Abstracts with Programs, 5(1), 631–632 (Resumen).

Gasparik, T., & Lindsley, D. H. (1980). Phase equilibria at high pressure of pyroxenes containing monovalent and trivalent ions. In C. T. Prewitt (Ed.), Pyroxenes: Reviews in Mineralogy (pp. 309–339). Volume 7.

Ghent, E. D. (1976). Plagioclase-garnet-Al₂SiO₅-quartz: A potential geobarometer-geothermometer. American Mineralogist, 61(1), 710–714.

Goldsmith, J. R. (1980). Melting and breakdown reactions of anorthite at high pressures and temperatures. American Mineralogist, 65(1), 874–885.

Gómez-Morán, C., & Elthon, D. (1986). Composition and equilibration conditions of lower crust under Xalapasco de La Joya (State of San Luis Potosí, Mexico). Geological Society of America Abstracts with Programs, 18(1), 618 (Resumen).

Gordon, T. M. (1977). Derivation of internally consistent thermochemical data from phase equilibrium experiments using linear programming. In H. J. Greenwood (Ed.), Short course in application of thermodynamics to petrology and ore deposits (pp. 185–198). Toronto: Mineralogical Association of Canada.

Greene, G. M. (1975). The geochemistry of spinel lherzolites from Xalapasco de La Joya in San Luis Potosí, Mexico (Master’s thesis, University of Houston). 43 páginas (Inédita).

Greene, G. M., & Butler, J. C. (1979). Spinel lherzolites from Xalapasco de La Joya, San Luis Potosí, SLP, Mexico. Mineralogical Magazine, 43(1), 483–486.

Grover, J. E. (1980). Thermodynamics of pyroxenes. In C. T. Prewitt (Ed.), Pyroxenes: Reviews in Mineralogy (pp. 341–417). Volume 7.

Hariya, Y., & Kennedy, G. C. (1968). Equilibrium study of anorthite under high pressure and high temperature. American Journal of Science, 266(1), 193–203.

Hays, J. F. (1966). Lime-alumina-silica. Carnegie Institution of Washington Yearbook, 65(1), 234–239.

Henry, D. J., & Medaris, Jr., L. G. (1980). Application of pyroxene and olivine-spinel geothermometers to spinel peridotites in southwestern Oregon. American Journal of Science, 280-A(1), 211–231.

Hensen, B. J. (1973). Pyroxene and garnets as geothermometers and geobarometers. Carnegie Institution of Washington Yearbook, 72(1), 527–534.

Hensen, B. J., Schmid, R., & Wood, B. J. (1975). Activity composition relations for pyrope-grossular garnet. Contributions to Mineralogy and Petrology, 51(1), 161–166.

Herzberg, C. T. (1978a). Pyroxene geothermometry and geobarometry and thermodynamic evaluation of some sub-solidus phase relations involving pyroxenes in the system CaO-MgO-Al₂O₃-SiO₂. Geochimica et Cosmochimica Acta, 42(1), 945–957.

Herzberg, C. T. (1978b). The bearing of phase equilibria in simple and complex systems on the origin and evolution of some well-documented garnet websterites. Contributions to Mineralogy and Petrology, 66(1), 375–382.

Holdaway, M. J. (1971). Stability of andalusite and the alumino silicate phase diagram. American Journal of Science, 271(1), 97–131.

Howells, S., & O'Hara, M. J. (1975). Paleogeotherms and the diopside-enstatine solvus. Nature, 254(1), 406–408.

Irvine, T. N. (1965). Chromian spinel as a petrogenetic indicator: Part 1, Theory. Canadian Journal of Earth Sciences, 2(1), 648–672.

Jackson, E. D. (1969). Chemical variation in coexisting chromite and olivine in chromitite zones of the Stillwater Complex. Economic Geology Monograph, 4(1), 41–71.

Labarthe-Hernández, G. (1978). Algunos xalapascos en el Estado de San Luis Potosí. San Luis Potosí: Universidad Autónoma de San Luis Potosí, Instituto de Geología y Metalurgia. Folleto técnico núm. 58. 17 páginas.

Lindsley, D. H. (1980). Phase equilibria of pyroxenes at pressures of 1 atmosphere. In C. T. Prewitt (Ed.), Pyroxenes: Reviews in Mineralogy (Vol. 7, pp. 289–307). Nueva York: Mineralogical Society of America.

Lindsley, D. H. (1983). Pyroxene thermometry. American Mineralogist, 68(1), 477–493.

Lindsley, D. H., & Andersen, D. J. (1983). A two-pyroxene thermometer. Journal of Geophysical Research, 88(Supplement), AB87–A906.

Lindsley, D. H., & Dixon, S. A. (1976). Diopside-enstatite equilibria at 850 to 1400 °C, 5 to 35 kb. American Journal of Science, 276(1), 1285–1301.

Lindsley, D. H., Grover, J. E., & Davidson, P. M. (1981). The thermodynamics of the Mg₂Si₂O₆-CaMgSi₂O₆ join—a review and a new model. In S. K. Saxena (Ed.), Advances in Physical Geochemistry (Vol. 1, pp. 149–175). Nueva York: Springer-Verlag.

Lindsley, D. H., King, Jr., H. E., & Turnock, A. C. (1974). Composition of synthetic augite and hypersthene coexisting at 810 °C—application to pyroxenes from lunar highland rocks. Geophysical Research Letters, 1(1), 134–136.

Luhr, J. F., Aranda-Gómez, J. J., & Pier, J. G. (1989). Spinel-lherzolite-bearing Quaternary volcanic centers in San Luis Potosí, Mexico; Part 1, Geology, mineralogy, and petrology. Journal of Geophysical Research, 94(B6), 7916–7940.

MacGregor, I. D. (1974). The system MgO-Al₂O₃-SiO₂: Solubility of Al₂O₃ in enstatite for spinel and garnet peridotite compositions. American Mineralogist, 59(1), 110–119.

Mercier, J. C. C., & Nicolas, A. (1975). Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16(1), 454–487.

Mori, T. (1978). Experimental study of pyroxene equilibria in the system CaO-MgO-FeO-SiO₂. Journal of Petrology, 19(1), 45–65.

Mori, T., & Green, D. H. (1975). Pyroxenes in the system MgSi₂O₆-CaMgSi₂O₆ at high pressure. Earth and Planetary Science Letters, 26(1), 277–286.

Mori, T., & Green, D. H. (1976). Subsolidus equilibria between pyroxenes in the CaO-MgO-SiO₂ system at high pressures and temperatures. American Mineralogist, 61(1), 616–625.

Mori, T., & Green, D. H. (1978). Laboratory duplication of phase equilibria observed in natural garnet lherzolites. Journal of Geology, 86(1), 83–97.

Nehru, C. E., & Wylie, P. J. (1974). Electron microprobe measurement of pyroxenes coexisting with H₂O under saturated liquid in the join CaMgSi₂O₆-MgSi₂O₆-H₂O at 30 kilobars, with applications to geothermometry. Contributions to Mineralogy and Petrology, 48(1), 221–228.

Newton, R. C. (1966). Some calc-silicate equilibrium relations. American Journal of Science, 264(1), 204–222.

Newton, R. C., & Haselton, H. T. (1981). Thermodynamics of the garnet-plagioclase-Al₂SiO₅-quartz geobarometer. In R. C. Newton, A. Navrotsky, & B. J. Wood (Eds.), Thermodynamics and Melts (pp. 131–147). Nueva York: Springer-Verlag.

Newton, R. C., Charlu, T. V., & Kleppa, O. J. (1977). Thermochemistry of high-pressure garnets and clinopyroxenes in the system CaO-MgO-Al₂O₃-SiO₂. Geochimica et Cosmochimica Acta, 41(1), 369–377.

Newton, R. C., Charlu, T. V., & Kleppa, O. J. (1980). Thermochemistry of the high structural state plagioclases. Geochimica et Cosmochimica Acta, 44(1), 933–941.

Obata, M. (1976). The solubility of Al₂O₃ in orthopyroxene in spinel and plagioclase peridotites and spinel pyroxenite. American Mineralogist, 61(1), 804–816.

Obata, M., Banno, S., & Mori, T. (1974). The iron-magnesium partitioning between naturally occurring coexisting olivine and Ca-rich clinopyroxene. American Mineralogist, 59(1), 91–95.

Orville, P. M. (1972). Plagioclase cation exchange equilibria with aqueous chloride solution—results at 700°C and 2000 bars in the presence of quartz. American Journal of Science, 272(1), 234–272.

Perkins, D., III, & Newton, R. C. (1980). The compositions of coexisting pyroxenes and garnet in the system CaO-MgO-Al₂O₃-SiO₂ at 900°C–1100°C and high pressures. Contributions to Mineralogy and Petrology, 75(1), 291–300.

Pier, J. G., Podosek, F. A., Luhr, J. F., Brannon, J. C., & Aranda-Gómez, J. J. (1989). Spinel-lherzolite-bearing Quaternary volcanic centers in San Luis Potosí, Mexico; Part 2, Sr and Nd isotopic systematics. Journal of Geophysical Research, 94(B6), 7941–7951.

Powell, J. A., & Gromet, P. L. (1980). Preliminary geochemical studies of selected crustal xenoliths, Xalapasco de La Joya Maar, San Luis Potosí, Mexico. EOS Transactions of the American Geophysical Union, 61(1), 388.

Powell, M., & Powell, R. (1977). Plagioclase-alkali feldspar geothermometry revisited. Mineralogical Magazine, 41(1), 253–256.

Raheim, A., & Green, D. H. (1974). Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene. Contributions to Mineralogy and Petrology, 48(1), 179–203.

Roberts, S. J., Ruiz, J., Arculus, R. J., & Patchett, P. J. (1987). Major and trace element zonation of the Mexican lower crust. EOS Transactions of the American Geophysical Union, 68(1), 1548 (Resumen).

Robie, R. A., Hemingway, B. S., & Fisher, J. R. (1978). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, 1452. 456 páginas.

Roeder, P. I., Campbell, I. H., & Jamieson, H. E. (1979). A re-evaluation of the olivine-spinel geothermometer. Contributions to Mineralogy and Petrology, 68(1), 325–334.

Ryburn, R. J., Raheim, A., & Green, D. H. (1976). Determination of the P-T paths of natural eclogites during metamorphism—record of subduction—a correction to a paper by Raheim and Green (1975). Lithos, 9(1), 161–164.

Ruiz, J., Essene, E. J., & Ortega-Gutiérrez, F. (1982). Pyroxenites from La Joya Honda Maar, San Luis Potosí, central Mexico. EOS Transactions of the American Geophysical Union, 63(1), 463 (Resumen).

Ruiz, J., Patchett, P. J., & Ortega-Gutiérrez, F. (1986). Isotopic and petrologic characteristics of crustal xenoliths from central Mexico. Geological Society of America Abstracts with Programs, 18(1), 178 (Resumen).

Ruiz, J., Patchett, P. J., & Arculus, R. J. (1988). Nd-Sr isotope composition of lower crustal xenoliths—evidence for the origin of mid-Tertiary felsic volcanics in Mexico. Contributions to Mineralogy and Petrology, 99(1), 36–43.

Ruiz, J., Patchett, P. J., & Ortega-Gutiérrez, F. (1988). Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies. Geological Society of America Bulletin, 100(1), 274–281.

Ruiz, J., Ortega-Gutiérrez, F., & Essene, E. J. (1983). Geochemical and petrographic characteristics of inclusions in Cenozoic alkalic basalts from central Mexico. EOS Transactions of the American Geophysical Union, 64(1), 343 (Resumen).

Schmid, R., Cressey, G., & Wood, B. J. (1978). Experimental determination of univariant equilibria using divariant solid solution assemblages. American Mineralogist, 63(1), 511–515.

Schmid, R., & Wood, B. J. (1976). Phase relationships in granulite metapelites from the Ivrea-Verbano Zone (northern Italy). Contributions to Mineralogy and Petrology, 54(1), 255–279.

Seck, H. A. (1971). Der Einfluss des Drucks auf die Zusammensetzung koexistierender Alkalifeldspäte und Plagioklase im System NaAlSi₃O₈-KAlSi₃O₈-CaAl₂Si₂O₈-H₂O. Contributions to Mineralogy and Petrology, 31(1), 67–86.

Smith, P., & Parsons, I. (1974). The alkali feldspar solvus at 1 kilobar water-vapour pressure. Mineralogical Magazine, 39

Stormer, J. C. (1975). A practical two-feldspar geothermometer. American Mineralogist, 60(1), 667–674.

Wells, P. R. A. (1977). Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62(1), 129–139.

Takahashi, T., & Liu, L. G. (1970). Compression of ferromagnesian garnets and the effect of solid solutions on the bulk modulus. Journal of Geophysical Research, 75(1), 5757–5766.

Wood, B. J. (1974). The solubility of alumina in orthopyroxene coexisting with garnet. Contributions to Mineralogy and Petrology, 46(1), 1–15.

Thompson, J. B., & Waldbaum, D. R. (1969). Mixing properties of sanidine crystalline solutions: Part 3, Calculations based on two-phase data. American Mineralogist, 54(1), 811–838.

Waldbaum, D. R., & Thompson, J. B. (1969). Mixing properties of sanidine crystalline solutions: Part 4, Phase diagrams from equations of state. American Mineralogist, 54(1), 1274–1298.

Warner, R. D., & Luth, W. C. (1974). The diopside-orthoenstatite two-phase region in the system CaMgSi₂O₆-Mg₂Si₂O₆. American Mineralogist, 59(1), 98–109.

Ziagos, J. P., Blackwell, D. D., & Mooser, F. (1985). Heat flow in southern Mexico and the thermal effects of subduction. Journal of Geophysical Research, 90(1), 5410–5420.

Wood, B. J. (1976). The partitioning of iron and magnesium between coexisting garnet and clinopyroxene. Carnegie Institution of Washington Yearbook, 75(1), 571–574.

Wood, B. J., & Banno, S. (1973). Garnet-orthopyroxene-clinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology, 42(1), 109–124.

Wood, B. J., & Fraser, D. G. (1978). Elementary thermodynamics for geologists. Oxford University Press. 303 páginas.

Published

1993-01-01